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Abstract—The growing popularity of multi-channel wearable devices,
such as smart glasses, has led to a surge of applications such as targeted
speech recognition and enhanced hearing. However, current approaches
to solve these tasks use independently trained models, which may not
benefit from large amounts of unlabeled data. In this paper, we propose
M-BEST-RQ, the first multi-channel speech foundation model for smart
glasses, which is designed to leverage large-scale self-supervised learning
(SSL) in an array-geometry agnostic approach. While prior work on
multi-channel speech SSL only evaluated on simulated settings, we curate
a suite of real downstream tasks to evaluate our model, namely (i)
conversational automatic speech recognition (ASR), (ii) spherical active
source localization, and (iii) glasses wearer voice activity detection, which
are sourced from the MMCSG and EasyCom datasets. We show that
a general-purpose M-BEST-RQ encoder is able to match or surpass
supervised models across all tasks. For the conversational ASR task in
particular, using only 8 hours of labeled speech, our model outperforms
a supervised ASR baseline that is trained on 2000 hours of labeled data,
which demonstrates the effectiveness of our approach.

Index Terms—Beamforming, BEST-RQ, multi-channel, self-supervised
learning, smart glasses.

I. INTRODUCTION

With the growing popularity and adoption of multi-channel smart
wearable devices such as smart glasses, there are several new use
cases related to the spatial understanding of audio and speech. These
include automatic speech recognition (ASR) for smart assistants,
enhanced hearing, etc [1]. Smart wearable devices usually consist
of multi-channel audio input and involve the wearer’s interaction
with the device and surrounding objects or participants. However,
because of the limited annotated data from such devices, the use of
multi-channel inputs is often limited to traditional signal processing.
Furthermore, different use cases are usually addressed using separate
models that do not make use of the knowledge from other tasks.
Self-supervised learning (SSL) has been shown to be effective on low-
resource tasks with representations learned from unlabeled data [2]–
[7], and “foundation models” trained using such methods have
recently outperformed supervised models [8]. Framing the above
problem in the low-resource context, our objective in this work is to
build the first foundation model specifically for tasks based around
wearable devices such as smart glasses.

Most existing work on speech SSL has focused on single-channel
inputs [3]–[6]. For multi-channel SSL, while researchers have pro-
posed methods such as Spatial HuBERT [9], multi-channel AV-
wav2vec2 [10], and UniX-Encoder [11], these models have only
been evaluated in limited settings of simulated data or fixed array-
geometry. Different from these, we want to build a foundation
model that be fine-tuned on several downstream tasks and can
work across wearable devices with different numbers of microphones
and array geometries. Our key insight to achieve device-agnosticity
is to use multiple super-directivity beamformers to convert “chan-
nels” to a fixed number of “directions” which can be processed
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by the neural encoder [12]. For the SSL backend, we propose a
multi-channel extension of BEST-RQ [13], since it is conceptually
simple and has been shown to outperform other methods such as
wav2vec 2.0 [14]. We refer to the resulting model as M-BEST-RQ.

Following the conventional paradigms, we first pre-train the M-
BEST-RQ encoder using masked estimation methods on a combina-
tion of large-scale synthetic data simulated from public datasets (such
as LibriSpeech [15] and Libri-Light [16]) and real multi-channel
data from the Project Aria glasses [1]. We then use the encoder for
supervised fine-tuning and evaluation on several downstream tasks:
conversational ASR (C-ASR), spherical active source localization
(S-ASL), and glasses wearer voice activity detection (W-VAD). On
the C-ASR task (formulated using the recently published MMCSG
dataset [17]), M-BEST-RQ achieves 20.1%/28.1% word error rate
(WER) for self/other speaker using only 8 hours of labeled speech,
outperforming an ASR baseline trained on 2k hours labeled data. We
curate the S-ASL and W-VAD tasks using the EasyCom dataset [18],
which is recorded on a different device than Aria. On these tasks,
our audio-only M-BEST-RQ model matches or outperforms baselines
trained with audio-visual modalities, indicating that M-BEST-RQ is
a generic foundation model that can work for several downstream
tasks on different devices.

II. M-BEST-RQ
Given raw speech X ∈ RT×M containing T samples collected
on M microphones, the problem is to learn a function f (the
foundation model) which converts X into task-and-array-agnostic
high-dimensional representations FT ′×D , where T ′ is usually down-
sampled from T . At a high-level, there are two questions that must be
answered in order to achieve this: (i) How do we make the foundation
model f invariant to the number of microphone channels M and their
geometry? (ii) How do we learn f such that it is “generic,” i.e., it
can perform well on any downstream task T ?

A. Array Invariance with Fixed Beamformers
For general-purpose multi-channel devices, array geometry invari-
ance may be achieved using neural methods such as cross-channel
attention [19] at the cost of increased computation. However, this
solution disregards the fact that all the array geometries, despite being
different, are situated on wearable devices and are used for wearer-
related tasks. With this assumption in place, we can instead make
use of device-specific beamformers to convert an arbitrary number
of input “channels” M to a fixed number of input “directions” K
(which equals to 12), as shown in Fig. 1. Formally, we have

F = f(X) = (fenc ◦ fbf)(X) = fenc (fbf(X)) , (1)
where fbf(X) = X′ ∈ RT×K is fixed, and fenc is parameterized by
a neural network. Here, X′ is invariant to the array geometry, and
represents a collection of signals from K directions.

For our function fbf , we use non-linearly constrained minimum-
variance (NLCMV) beamforming [12], [20]. Given the mouth-IC
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Fig. 1: System architecture of M-BEST-RQ and downstream tasks.

directed and far-field acoustic transfer functions (ATFs), the beam-
forming weights hk(jω) of each steering direction k ∈ {1, . . . ,K}
are obtained by minimizing

hH(jω)

Φdd(jω) + ϕpp(ω)

N∑
n=1

αp,n · gn(jω)g
H
n (jω)︸ ︷︷ ︸

soft control of null directions.

h(jω),

(2)
which is subject to the linear equality and nonlinear inequality
constraints, and they are simplified to

hH(jω)g(jω) = 1,
c(ω) ≜ hH(jω)Ψ(jω)h(jω) ≤ 0︸ ︷︷ ︸

constraint on white noise gain.

, (3)

where Φdd(jω) is the covariance matrix of diffuse noise, and

Ψ(jω) ≜ I− gn(jω)g
H
n (jω) ·M

/[
M∑

m=1

|Gm(jω)|2
]
. (4)

The Gm(jω) are measured channel responses from the target
speech source to the m-th microphone (ATFs). N is the number
of point noise sources, ϕpp(ω) is the power spectral density of point
noise, αp,n is the n-th point noise weight, gn(jω) is the channel
response from the n-th point noise source, and I is the identity
matrix. The nature of the directive signal enables the model to learn
array-geometry agnostic representations, and with ATFs available,
the NLCMV beamforming can be applied to any new device, i.e.,
X′ = hk(jω)X.

B. Task Invariance with BEST-RQ

We extend the BEST-RQ [13] to work with multi-channel inputs
by affixing a multi-channel projection module in front. Given X′,
we extract the corresponding log-Mel filterbank features, and then
project the K channels into a single channel using a gated convolution
followed by batch-normalization, thus resulting in latent represen-
tations Y which contain information from all K directions. These
representations are provided as input to a VGG-Conformer encoder
(fenc), which outputs semantic embeddings F.

Similar to [13], we train the encoder by masking random chunks
of Y before feeding to fenc. An unmasked Y is projected using
a randomly initialized quantizer into discrete labels, and the pre-
training objective is to predict the labels corresponding to the masked
regions using cross-entropy loss, LCE. During the fine-tuning stage,
we add additional layers to the output of the VGG-Conformer encoder
and train it on labeled data for different downstream tasks with
different loss functions, as shown in Fig. 1. Our conjecture is that
the masking Y in the pre-training stage imparts semantic as well as
directional understanding of multi-channel speech to the M-BEST-
RQ encoder, which would enable it to work well on several tasks.

III. EXPERIMENTAL SETUP

A. Datasets
We simulated 7-channel LibriSpeech (LS) and Libri-Light (LL)
datasets according to the array configuration of the Project Aria
glasses, based on the original LibriSpeech [15] and Libri-Light [16]
datasets. For this, we first segmented the long utterances into shorter
segments (between 0.5 and 10 seconds) based on forced alignments1.
We then generated 100k room impulse responses (RIRs) for the
Aria microphone array, and used these to simulate multi-channel,
multi-speaker conversations between a wearer, a participant, and a
distractor speaker. The simulation process is the same as the “train-
from-scratch” baseline of the MMCSG challenge [17]. The duration
of the simulated multi-channel LS and LL datasets are about 2k and
140k hours, respectively, with each utterance being 12±5 seconds.

In addition, we also used ∼800 hours of real, in-house, multi-
channel data collected using the Aria glasses to investigate the impact
of real data in pre-training. We downsampled these recordings from
48 kHz into 16 kHz and randomly segmented the recording into 12±5
second segments, resulting in segments in the range [2, 30] seconds.
We refer to this dataset as RD.

For fine-tuning and evaluation, we curated 3 downstream tasks
based on the MMCSG [17] and EasyCom [18] datasets. MMCSG is
released as part of the CHiME-8 challenge2 focusing on transcribing
natural conversations between two speakers, recorded on Aria glasses.
The duration of training, development, and evaluation data is 8.5,
8.4, and 9.4 hours, respectively. EasyCom is a dataset of multi-talker
conversations in noisy environments with egocentric video recorded
on a pair of augmented-reality (AR) glasses with a different number
and array of microphones from the Aria glasses. The duration of the
dataset is about 5.3 hours. Details of the microphone positions of
two glasses are shown in Fig. 2. For the EasyCom AR glasses, we
only used the first 4 microphones which are on the device. Since
EasyCom has an audio/video frame rate of 20 Hz, while the frame
rate of our M-BEST-RQ encoder is 25 Hz, we resampled the frames
in EasyCom by 0.8 through repetition and subsampling.

B. Pre-training
We trained four M-BEST-RQ models on different combinations of
datasets: LS, RD, LS+RD, and LL. All models share the same archi-
tecture, containing fixed beamformers, a log-mel filterbank extractor,
gated 2-D convolutions, and a VGG-conformer encoder. The VGG-
Conformer encoder consists of 2 VGG [21] subsampling layers and
24 Conformer encoder layers [22] with a hidden dimension of 512.

1Since Libri-Light does not contain transcriptions for each utterance, we
used an in-house ASR model to get pseudo-labels for simulation purposes.

2https://www.chimechallenge.org/challenges/chime8/task3
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(a) Project Aria glasses (b) EasyCom AR glasses
Fig. 2: Microphone positions of two devices: (a) Aria glasses, containing
7-channel input, and (b) EasyCom AR glasses, containing 6-channel
input. For (b), we only used the first 4 microphones which are on the
device.

The number of trainable parameters of M-BEST-RQ is ∼96M. We
used 32 NVIDIA A100 GPUs to train M-BEST-RQ on LS, RD,
and LS+RD with a batch size of 3000, and 128 A100 GPUs to
train M-BEST-RQ on LL with a batch size of 8000. For all pre-
training, the Adam optimizer was used with betas of (0.9, 0.98),
epsilon of 1e−8, and weight decay of 1e−4. A tri-stage learning rate
schedule was used with a peak learning rate of 0.0003, warmed up
for 20k steps (or 30k for LL pre-training). We used 2048 code-books,
each of size 24, for the random quantizer. The mask probability and
lengths were set to 0.02 and 30 frames, respectively, based on our
preliminary investigation. For fine-tuning, we selected models from
different checkpoints for each of LS (600k steps), RD (400k steps),
LS+RD (600k steps), and LL (850k steps), based on the convergence
of the training accuracy of codebooks.
C. Downstream Tasks
As mentioned earlier, most existing work on multi-channel SSL
has conducted evaluations on simulated tasks. In order to evaluate
M-BEST-RQ on real settings, we curated three downstream tasks
focused on the smart glasses use case. We describe these tasks and
their implementation details below.
1) Conversational ASR
The C-ASR task is based on CHiME-8 Task-3, using the MMCSG
dataset. It consists of conversations recorded between the wearer and
a participant (the speaker located directely in front of the wearer)
in the presence of background noise and distracting speakers. The
task objective is to transcribe and attribute the speech from both the
wearer (self) and the participant (other). Performance is measured
using the speaker-attributed WER metric. We used the same data
preparation process as the official baseline system for MMCSG. This
involves cropping each recording to ∼20 second segments and using
serialized output training (SOT) transcripts [23]. We inserted »0 and
»1 before each token in the reference to indicate whether the token
is attributed to self or other, respectively.

For M-BEST-RQ fine-tuning, we added a 4096-dimensional linear
head (one for each sentence-piece including »0 and »1) on the output
of the VGG-Conformer encoder and trained with CTC loss [24].
We used 8 A100 GPUs during fine-tuning with batch size 256. We
warmed up the learning rate to 3e−5 for 6000 warm-up steps and then
decayed it exponentially. During fine-tuning, we used real volume
perturbation to scale the volume of conversations within the range
from 0.01 to 0.99. We also added a SpecAugment layer [25] after
the feature extraction.

Since the official challenge baseline is a streaming RNN-T
model [26], we prepared a comparable ASR baseline which shares
the same model architecture as our fine-tuned M-BEST-RQ. We first
trained this ASR model on LS, and then fine-tune on MMCSG train
set after convergence.
2) Spherical Active Source Localization
The presence of multiple microphones on smart glasses enables
localization for the active source around the wearer. S-ASL [27]

predicts a (90, 180) feature map where 90 and 180 denote the
elevation and azimuthal, respectively, with a 2° resolution. The
position in the feature map indicates the angles of directions and is
computed by transferring the annotation of 3D points and quaternions
to the (90, 180) map where 0/1 indicate the absence/presence of a
speech source. Following [28], we treat this task as classification
and follow the same step in terms of training and evaluation. During
fine-tuning, we added two linear layers at the output of the VGG-
Conformer encoder, projecting the hidden dimension to 4050. After
reshaping to (45, 90), two tensors are upsampled and concatenated
to (2, 90, 180). We apply the same non-maximum suppression of
radius 5 and threshold 0 and match the augmented ground truth
with the Hungarian algorithm [28]. The evaluation metrics are mean
angular errors (MAE) for the distance from prediction to ground
truth (indicating false positives), and from ground truth to prediction
(indicating missing targets). Training was done on 16 A100 GPUs
with a batch size of 64, and a tri-stage learning rate with 2500 warm-
up and 17500 decay steps, with a peak learning rate of 3e−5. Same
as [27], [28], we used sessions 4-12 for training and 1-3 for testing
on EasyCom.
3) Glasses Wearer VAD
We define this task as frame-level binary classification where for
each frame, the model output is 1 if the glasses wearer is speaking
and 0 otherwise. We used the same EasyCom dataset as in S-ASL
to create this task. Following [27], for the fine-tuning of M-BEST-
RQ, we added two linear layers at the end of the VGG-Conformer
encoder to perform binary classification. The training was done on
8 A100 GPUs with a batch size 128, with a peak learning rate of
3e−5 warmed up for 3000 steps. As before, we used sessions 4-12 for
training and 1-3 for testing. We computed the mean average precision
(mAP) as the metric to evaluate each model.

IV. RESULTS & DISCUSSION

A. Conversational ASR
We compare the results of different systems in Table I. The challenge
baseline is an RNN-T ASR model [26] which has ∼114 M trainable
parameters, and is pre-trained on 4.5k hours of 7-ch perturbed LS
and TED-LIUM [29] (denoted as LS++). We reproduce the official
baseline results here [17]. All other systems are models trained with
CTC loss with ∼98 M trainable parameters. For the CTC models,
we included a system trained directly on the MMCSG training set
in addition to our ASR baseline. Systems (A), (B), (C), and (D)
use M-BEST-RQ encoders pre-trained on RD, LS, LS+RD, and LL,
respectively. We also included systems (E) and (F), which use LS for
fine-tuning, in addition to MMCSG.

First, we see that our CTC-based ASR baseline is competitive with
the challenge baseline, despite using less pre-training data. Among
the M-BEST-RQ systems fine-tuned only with 8h of MMCSG data,
systems (A) and (B), trained on RD and LS, respectively, were found
to be worse than the ASR baseline. However, system (C), which
was trained on LS+RD, achieved 21.5%/29.5% WER on self/other
speaker, outperforming the ASR baseline by over 1% absolute WER
reduction. This indicates that pre-training using a combination of
synthetic and real data may be important for the M-BEST-RQ
model, when the size of synthetic data is small. Nevertheless, if
large-scale simulated data is used, real data may not be required,
as shown by the strong performance of system (D). This system,
despite being pre-trained on LL only, achieved 20.1%/28.1% WER on
self/other, outperforming the ASR baseline by 2%. Systems (E) and
(F) further improved the WER by over 6% absolute, demonstrating
the importance of labeled data.
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TABLE I: C-ASR results on the MMCSG evaluation set, in terms of self and other WER (%). We also report WER breakdown into insertion (ins),
deletion (del), substitution (sub), and speaker attribution (attr) errors. † denotes the official challenge baseline. Underline denotes labeled data in
pre-training. All fine-tune data are labeled.

Model Pre-train Fine-tune Self Other

Data Size (h) Size (h) WER ins del sub attr WER ins del sub attr

RNN-T† LS++ 4.5k 8 22.0 2.7 4.3 13.5 1.6 32.8 4.2 8.0 17.9 2.6

CTC
None 0 8 67.8 4.0 15.2 46.2 2.4 76.4 4.8 14.9 52.1 4.5
LS 2k 8 22.9 2.5 4.3 14.8 1.4 30.8 3.7 7.3 17.9 1.9

M-BEST-RQ

(A) RD 800 8 40.5 4.0 7.2 28.0 1.4 49.6 5.3 9.4 32.7 2.2
(B) LS 2k 8 24.3 2.2 4.1 16.6 1.4 33.4 3.8 7.2 20.5 1.8
(C) LS+RD 2.8k 8 21.5 2.0 3.7 14.3 1.4 29.5 3.5 6.7 17.9 1.4
(D) LL 140k 8 20.1 2.0 3.5 13.4 1.2 28.1 3.7 6.2 16.8 1.3

(E) LS+RD 2.8k 2k+8 16.7 1.8 3.2 10.5 1.1 24.5 3.3 6.2 13.9 1.1
(F) LL 140k 2k+8 16.5 1.6 3.6 10.2 1.1 23.8 3.0 6.7 12.9 1.3

TABLE II: S-ASL results on the EasyCom dataset. We report MAEp→g

(false positives), MAEg→p (missing targets), and their mean mMAE,
all in degrees. “AV” indicates whether audio-visual input is used in the
model. M-BEST-RQ models (C) and (D) are as defined in Table I.

Model (← Input) AV Size (M) MAEp→g MAEg→p mMAE

[27] ← DOA ✗ 15.8 129.8 46.5 88.1
[27] ← AV + cor ✓ 28.4 16.8 6.6 11.7
[27] ← AV + spec ✓ 28.4 8.8 6.2 7.5
[27] ← DOA + image ✓ 28.4 66.8 36.5 51.7
[27] ← AV + raw-audio ✓ 28.4 40.1 140.8 90.5
[28] AVSL (scratch) ✓ 10.7 9.3 4.7 7.0
[28] AVSL (pre-trained) ✓ 10.7 8.0 4.5 6.3

(C) + frozen ✗ 4.2 25.9 6.4 16.2
+ weighted comb. ✗ 4.2 24.0 4.8 14.4
+ full fine-tune ✗ 99.7 4.9 7.0 6.0

(D) + frozen ✗ 4.2 26.7 6.3 16.5
+ weighted comb. ✗ 4.2 22.0 4.6 13.3
+ full fine-tune ✗ 99.7 4.5 6.7 5.6

B. Spherical Active Source Localization

Following [30], we compared the MAE from prediction to ground
truth (p → g) and from ground truth to prediction (g → p), and
their mean (mMAE), as shown in Table II. We report the baseline
numbers directly from the cited papers. In addition to full model fine-
tuning, we also evaluated other fine-tuning approaches: (i) frozen,
where the M-BEST-RQ encoder is kept frozen and only train the
last linear layers are fine-tuned, and (ii) “weighted comb.”, which
additionally uses a weighted combination of all conformer layer out-
puts with trainable weights. Despite having a much smaller number
of trainable parameters, these models outperformed the AV models
which use DOA+image and AV+raw-audio as inputs. Nevertheless,
the MAEp→g was found to be high, indicating that these models
are more likely to hallucinate extra speech sources. Full model fine-
tuning was able to solve this problem, with the fine-tuned system (D)
outperforming all baselines trained on audio-visual (AV) inputs with
a state-of-the-art mMAE of 5.6 degrees.

C. Glasses Wearer Voice Activity Detection

Table III shows the mAP numbers for the W-VAD task, with
the baselinee numbers reported directly from the cited papers. All
baselines were initialized from the AV models trained on the S-
ASL task, whereas our models are fine-tuned only on the W-VAD
task. We found that our fine-tuned model (C) achieved over 90%
mAP, which is comparable with the baselines. Nevertheless, the best
baseline results are obtained using spectrogram features, suggesting

TABLE III: W-VAD results on the EasyCom dataset, in terms of
mAP (↑). All baselines contain <1M trainable params, similar to the
“frozen” and “weighted comb.” versions of our M-BEST-RQ models.
“AV” indicates whether audio-visual input is used during pre-training.

Model (← Input) AV Pre-train mAP

[27] ← cor ✓ 90.20
[27] ← energy ✓ 88.89
[27] ← spec ✓ 91.69
[27] ← AV + raw-audio ✓ 87.29
[28] AVSL ✓ 93.70

(C) + frozen ✗ 86.66
+ weighted comb. ✗ 87.75
+ full fine-tune ✗ 90.16

(D) + frozen ✗ 86.12
+ weighted comb. ✗ 87.72
+ full fine-tune ✗ 89.29

that the use of log-Mel features in M-BEST-RQ may be suboptimal.
Furthermore, since EasyCom does not provide official mouth-directed
ATFs, we designed the mouth beamformer solely based on the array
geometry. This may also explain the relatively weaker performance,
as the beamformed signal from the wearer’s mouth may be a strong
indicator for the W-VAD task.

V. CONCLUSION

We introduced M-BEST-RQ, the first foundation model designed
specifically for smart glasses, and curated three downstream tasks to
evaluate its performance: C-ASR, S-ASL, and W-VAD. Evaluations
on the MMCSG and EasyCom datasets demonstrated the utility of
M-BEST-RQ for multi-channel speech across devices. On the conver-
sational ASR task, M-BEST-RQ fine-tuned with only 8 hours labeled
data outperformed strong ASR baselines trained on 2k+ labeled hours.
With EasyCom, we showed the cross-device generalizability of M-
BEST-RQ, where it matched or outperformed state-of-the-art results
on the source localization and wearer VAD tasks. We believe that
advancements in these tasks have significant potential to improve
the user experience in wearable devices. With this framework in
place, future work can build upon our model by exploring different
SSL techniques or input features, and developing streaming and
lightweight foundation models to facilitate seamless deployment.

Acknowledgments. We thank Kateřina Žmolíková, Morrie Doulaty,
Christi Miller, and Calvin Murdock for their help in preparing the
pre-training data and downstream tasks.
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