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Abstract—Despite the tremendous success of automatic speech recog-
nition (ASR) with the introduction of deep learning, its performance is
still unsatisfactory in many real-world multi-talker scenarios. Speaker
separation excels in separating individual talkers but, as a frontend, it
introduces processing artifacts that degrade the ASR backend trained
on clean speech. As a result, mainstream robust ASR systems train on
noisy speech to avoid processing artifacts. In this work, we propose to
decouple the training of the multi-channel speaker separation frontend
and the ASR backend, with the latter trained only on clean speech. On
SMS-WSJ, the proposed approach achieves a word error rate (WER)
of 5.74%, outperforming the previous best by 14.3%. Furthermore, on
recorded LibriCSS, we achieve the speaker-attributed WER of 3.86%,
outperforming the previous best system trained on the same data by
24.8%. These state-of-the-art results suggest that decoupling speech
separation and recognition is a potentially effective approach to robust
ASR.

Index Terms—LibriCSS, multi-channel, robust ASR, SMS-WSJ,
speaker separation

I. INTRODUCTION

In the era of deep learning, automatic speech recognition (ASR) has
made tremendous strides, progressing from conventional Gaussian
mixture model plus hidden Markov model (GMM-HMM) approaches
[1], to hybrid systems of deep neural network and HMM (DNN-
HMM) [2] to end-to-end (E2E) systems [3]. ASR has been seamlessly
integrated into our daily lives as a fundamental component in personal
assistants and home devices, significantly boosting human-computer
interaction. Despite its success, ASR is prone to acoustic interference,
such as reverberation, background noise, and overlapping speakers.
The unavoidable mismatch between speech signals in such environ-
ments and the transcribed training data in clean conditions poses
a persistent obstacle, demanding the development of robust ASR
systems capable of overcoming this mismatch [4], [5].

Meanwhile, the introduction of deep learning has also dramatically
improved speech separation performance [6], including the intelligi-
bility and quality of degraded speech signals. To address the robust
ASR problem, a straightforward approach is to leverage a speech
separation model as the frontend for an ASR backend model. Speech
separation models operate in the time [7], [8] or time-frequency (T-F)
domains [9]–[11] for speech enhancement (speech-noise separation)
or multi-talker speaker separation. Despite these effective frontends,
the processing artifacts introduced in separation can be detrimental
to the ASR backend trained on clean speech [12].

To address this problem, prevailing approaches train the ASR
model directly on noisy speech [4], [5], or enhanced speech [12],
or train a joint system of speech separation frontend and ASR
backend [13]. In multi-talker cases, training ASR on overlapped
speech directly is problematic due to the large variety of mixed
talkers. Although there are multi-talker ASR approaches, such as
serialized output training [14], their performance degrades on single-
talker ASR. Also, the amount of annotated data for conversational
ASR is much smaller than that for single-talker ASR. Hence, speaker

separation becomes necessary to address overlapped speech for robust
ASR [15]. The selection of training data for the ASR backend has
now become critical to achieving high performance. The mainstream
strategy trains ASR on single-talker speech with various noise aug-
mentations, as in the baseline system of the SMS-WSJ corpus [16].
However, when tested on clean speech, an inevitable performance
gap arises between the ASR model trained on noisy speech and
that trained on clean speech. By clean speech, we include single-
talker utterances recorded in a variety of quiet places in the real
environment, as done in the collection of the LibriSpeech corpus [17].
As speech separation performance continues to improve, is training
the ASR backend on noisy speech still the most effective approach?
This approach creates a mismatch between the separated speech that
is aimed to be clean and the noisy training data.

In this work, we aim to eliminate such mismatch and elevate
the robust ASR performance. We address multi-channel robust ASR
in multi-talker scenarios and propose to decouple the stages of
speaker separation and speech recognition. Our approach separates
the training of a multi-channel speaker separation frontend and
an ASR backend trained on clean speech only, i.e. each stage is
trained separately without considering the other. In this way, the
mismatch between the frontend output and the backend training data
could be alleviated. As shown in [18], [19], with monaural speech
enhancement, ASR trained on clean speech outperforms that trained
on noisy speech. We do not investigate a joint model as it has been
shown that, after joint fine-tuning, the performance of each part
degrades on its original task for a robust ASR system designed with
a speaker separation frontend and ASR backend [20].

The proposed decoupled system is evaluated on the SMS-WSJ
and LibriCSS corpora. On SMS-WSJ, we achieve a word error rate
(WER) of 5.74% by training the backend on clean speech only,
outperforming by 14.3% the previous best [10] that trains the backend
on reverberant-noisy speech with three times our training data.
Moreover, on LibriCSS, we achieve the speaker-attributed WER of
3.86%, outperforming the previous best [21] by 24.8% with an ASR
backend trained on the same clean speech data. These results with
different frontend and backend combinations show that the proposed
decoupled approach can substantially elevate the performance of
robust ASR, and the ASR backend does not have to be trained on
noisy speech as done in the mainstream approach.

The main contributions are summarized as follows. First, we
develop a decoupled robust ASR system where the speaker separation
frontend and ASR backend are independently trained, with the
backend trained on clean speech. Second, this work demonstrates
that, with a strong speaker separation frontend, training ASR on
clean speech can elevate recognition performance; we have advanced
the state-of-the-art results on the SMS-WSJ and LibriCSS datasets.
The decoupled approach offers a strong alternative to the mainstream
approach for robust conversational ASR.IC
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The remainder of the paper is organized as follows. Section II
formulates the system model and describes the DNN architectures
of the frontend and backend. Section III describes the experimental
setup and implementation details. Section IV presents the results and
comparisons. Conclusions and discussions are made in Section V.

II. METHODS

A. Problem Formulation

1) Speaker Separation: The physical model of a P -microphone
mixture can be formulated in the short-time Fourier transform (STFT)
domain as

Y(t, f) =

C∑
c=1

X(c, t, f) +N(t, f)

=

C∑
c=1

(S(c, t, f) +H(c, t, f)) +N(t, f),

(1)

where C is the number of speakers, which is set to 2 in this study,
assuming at most 2 speakers talk simultaneously. Y(t, f), X(c, t, f),
N(t, f), S(c, t, f), and H(c, t, f) ∈ CP respectively denote the
STFT of the received mixture, reverberant image, reverberant noise,
direct-path signal, and early reflections plus late reverberation at time
t and frequency f of speaker c. We drop the index of t and f in later
notations. Speaker separation aims to estimate Sq(c) for each source
at a reference microphone q given input Y.

2) Automatic Speech Recognition: An ASR system estimates a
word sequence W∗ given a sequence of acoustic features X of speech
signal x, which can be formulated as

W∗ = argmax
W

PAM,LM(W|X), (2)

where AM and LM denote an acoustic model (AM) and language
model (LM), respectively. Using Bayes’ theorem, Eq. 2 can be written
as

W∗ = argmax
W

pAM(X|W)PLM(W), (3)

where pAM and PLM are AM likelihood and LM prior probability,
respectively. An AM predicts the likelihood of acoustic features of a
phoneme or another linguistic unit, and an LM provides a probability
distribution over words or sequences of words in a speech corpus. In
an E2E ASR system, the word sequence is predicted directly given
X.

B. Speaker Separation Frontend

1) SpatialNet: SpatialNet [10] is employed as one T-F domain
multi-channel speaker separation frontend. It has interleaved narrow-
band and cross-band blocks to exploit narrow-band and across-
frequency spatial information, respectively. The narrow-band blocks
process frequencies independently, and use a self-attention mecha-
nism and temporal convolutional layers to perform spatial-feature-
based speaker clustering and temporal smoothing and filtering, re-
spectively. The cross-band blocks process frames independently, and
use full-band linear layer and frequency convolutional layers to learn
the correlation between all frequencies and adjacent frequencies,
respectively.

SpatialNet performs complex spectral mapping by predicting the
real and imaginary (RI) parts of the STFT of each talker from
the stacked RI parts of the STFT of overlapped speech [22]. The
separated waveforms are generated by performing an inverse STFT
on the estimated RI parts.

2) TF-CrossNet: We use TF-CrossNet as another T-F domain
multi-channel speaker separation frontend [11]. Motivated by Spatial-
Net [10], TF-CrossNet introduces positional encoding and a cross-
temporal module after the cross-band module. This modification
enhances temporal processing. TF-CrossNet also performs complex
spectral mapping for speaker separation.

3) Speaker Separation via Neural Diarization: We leverage
speaker separation via neural diarization (SSND) [21] for multi-talker
speech recognition [23]. SSND performs speaker separation with
the integration of speaker diarization. The diarization is performed
with a multi-channel end-to-end neural diarization with an encoder-
decoder-based attractor module (MC-EEND) trained with location-
based training (LBT) [24] to resolve the permutation ambiguity. After
diarization, a sequence of speaker embeddings computed from the
non-overlapped speech is leveraged to facilitate the assignment of
speakers to the output streams of the speaker separation model. In
this way, speaker assignment is accomplished during the diarization
process, instead of the speaker separation process.

C. Speech Recognition Backend

1) Factorized Time-delayed Neural Network: We utilize a factor-
ized time-delayed neural network (TDNN-F) based on the WSJ Kaldi
recipe [25] as one ASR backend. The AM consists of 8 TDNN-F
layers, and the final word sequence is obtained by decoding the state
posteriors with a default WSJ tri-gram Kaldi language model without
additional N-best restoring. More details can be found in [16].

2) Wide-residual Conformer: We utilize an E2E ASR model in
[19], which is a connectionist temporal classification (CTC) and
attention Conformer-encoder Transformer-decoder E2E ASR model,
denoted as wide-residual Conformer (WRConformer) 1. It leverages
the ASR recipe in ESPnet [26], and adapts the standard CTC/attention
Conformer-encoder Transformer-decoder ASR recipe to WRCon-
former. In this adaptation, the 2-D convolution in the subsampling
module is replaced by a modified wide-residual convolutional neural
network (WRCNN), which comprises two ResBlocks (see [27]). The
first ResBlock projects an input log-Mel feature to 512 dimensions,
while the second Resblock maintains the same input and output
dimensions. Each ResBlock subsamples time frames by a factor of
2, resulting in the total number of frames reduced by a factor of
4 after the processing of the subsampling module, matching the
default ESPnet subsampling module. In WRConformer, the number
of Conformer encoders is set to 10 and the other configurations are
the same as the default ESPnet setting.

III. EXPERIMENTAL SETUP

A. Datasets

1) SMS-WSJ: We employ SMS-WSJ [16] to evaluate ASR with
multi-channel speaker separation in reverberant conditions. The
dataset consists of 33561, 982, and 1332 train, validation, and test
mixtures, respectively. All utterances are drawn from the WSJ0 and
WSJ1 datasets [28]. The sampling rate is 8 kHz and the longer
utterance determines the length of the mixture. The sensor array is
a circle with a radius of 10 cm. T60s are samples in [0.2, 0.5] s,
and the distance between the array and the speaker ranges in [1, 2]
m. Additive white sensor noise is added with signal-to-noise ratio
(SNR) ranges in [20, 30] dB. The first microphone is selected as the
reference microphone.

1https://github.com/yfyangseu/espnet
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2) LibriCSS: LibriCSS is a dataset designed for evaluating multi-
talker speech recognition [23]. The dataset has 10 one-hour sessions
each has 6 ten-minute mini-sessions with different overlap levels.
These levels are 0S (no overlap and inter-utterance silence ranges in
[0.1, 0.5] s), 0L (no overlap and inter-utterance silence ranges in [2.9,
3.0] s), and speaker overlap ratio at 10%, 20%, 30%, and 40%. The
utterances are drawn from the LibriSpeech [17] test-clean set and
the sampling rate is 16 kHz. The recordings are made in a meeting
room with a seven-channel circular microphone array, which has six
microphones evenly placed on a circle with a radius of 4.25 cm and
an additional central microphone.

The meeting-style training data for MC-EEND and SSND is gen-
erated following a LibriCSS recipe2, where the LibriSpeech training
set is utilized. We follow the same data generation setup as [21]
for speaker diarization and speaker separation training. The central
microphone is treated as the reference microphone.

B. Frontend Configurations

1) SMS-WSJ: For SMS-WSJ, we employ TF-CrossNet [11] for
multi-channel speaker separation. The model is configured with 12
TF-CrossNet blocks where the number of channels is set to 192 and
the cross-band hidden dimension of 16. In addition, the narrow-band
hidden dimension is set to 384, and the number of attention heads
is 4. The STFT frame size and shift are 32 and 16 ms, respectively.
Additionally, a random chunk positional encoding is employed. TF-
CrossNet is trained and validated on all six-channel training and
validation mixtures. The RI-Mag loss [29] is utilized for training,
which is defined as

LRI-Mag(S, Ŝ) =
∥∥∥Sr − Ŝr

∥∥∥
1
+

∥∥∥Si − Ŝi

∥∥∥
1

+
∥∥∥|S− Ŝ|

∥∥∥
1
,

(4)

where S and Ŝ denote the STFT of the ground truth and estimated
speech. Subscript r and i denote the real and imaginary parts of
STFT, respectively. | · | denotes magnitude and || · ||1 denotes the
L1 norm. The loss function is computed via permutation-invariant
training [30]. Training is performed on 4 NVIDIA A40 GPUs for
125 epochs, employing automatic mixed precision for accelerated
training. The gradient clipping is set to 2.

2) LibriCSS: We employ the same setup as [21] for MC-EEND
and SSND training. The MC-EEND encoder for diarization utilizes
eight Transformer blocks, each with 16 attention heads and a hidden
dimension of 256. For speaker separation, we use SpatialNet-large
[10], consisting of 12 blocks, D = 192 channels, narrowband hidden
dimensions of 384, and cross-band hidden dimensions of 16. STFT
window size and shift are 32 and 16 ms, respectively. SpatialNet
incorporates speaker embedding sequences with multi-channel speech
mixtures, processed through separate encoders and stacked for sub-
sequent SpatialNet blocks. Same as the SMS-WSJ setup, we use
automatic mixed precision during training, and RI-Mag loss is utilized
to train SpatialNet.

C. Backend Configurations

1) SMS-WSJ: The ASR backend is based on the TDNN-F
AM [16]. We train four AMs on different types of training data.
The task-standard AM is trained on reverberant-noisy speech from
the first, third, and fifth microphones. We train three additional AMs
on WSJ 8 kHz (denoted as WSJ) clean speech, direct-path speech,
and TF-CrossNet separated training set, all from the first microphone

2https://github.com/jsalt2020-asrdiar/jsalt2020_simulate

only. The alignment is based on the clean speech for the AM trained
on WSJ, and on the first channel of direct-path speech for all other
AMs. The training and decoding setup for all AMs follow the task-
standard settings. The TF-CrossNet-separated training set is only
used as a reference of the performance because this will create a
dependency between the frontend and backend.

2) LibriCSS: WRConformer has 10 Conformer encoders, 6 Trans-
former decoders, and an attention dimension of 512 with 8 attention
heads. The feedforward layer operates with a dimension of 2048. A
dropout rate of 0.1 is applied. The CTC weight is set to 0.3, and the
label smoothing weight is 0.1. The STFT frame size and shift are
512 and 160, respectively. WRConformer is trained on LibriSpeech
for 50 epochs on 4 NVIDIA A100 GPUs. Tested on LibriSpeech
test-clean and test-other sets, WRConformer achieves 1.9% and
4.1% WER. We denote WRConformer as Our E2E in Section IV-B
and compute the concatenated minimum-permutation WER (cpWER)
[31]. cpWER is computed by concatenating all utterances of each
speaker for both reference and hypothesis, then computing the WER
between the reference and all possible speaker permutations of the
hypothesis, and finally picking the lowest WER value.

IV. RESULTS AND DISCUSSIONS

A. Results on SMS-WSJ

TABLE I: Results on SMS-WSJ (6-channel).

Model SI-SDR SDR PESQ eSTOI WER
Unprocessed -5.5 -0.4 1.50 0.441 79.11
Oracle direct-path ∞ ∞ 4.50 1.000 6.16
FasNet+TAC [32] 8.6 - 2.37 0.771 29.80
MC-ConvTasNet [33] 10.8 - 2.78 0.844 23.10
MISO1 [34] 10.2 - 3.05 0.859 14.0
LBT [24] 13.2 14.8 3.33 0.910 9.60
MISO1-BF-MISO3 [34] 15.6 - 3.76 0.942 8.30
TF-GridNet [9] 22.8 24.9 4.08 0.980 6.76
SpatialNet [10] 25.1 27.1 4.08 0.980 6.70
TF-CrossNet 25.8 27.6 4.20 0.987 6.30

In Table I, we compare the task-standard evaluation of the proposed
system with other baseline systems on the SMS-WSJ corpus in
terms of signal-to-distortion ratio (SDR), scale-invariant SDR (SI-
SDR) [35], perceptual evaluation of speech quality (PESQ) [36],
extended short-time objective intelligibility (eSTOI) [37], and WER.
TF-CrossNet outperforms all baseline systems.

TABLE II: ASR (%WER) results of different AMs on different test data
on SMS-WSJ. † denotes performance upperbound.

Test Data
AM Train Data

Reverb-noisy WSJ Direct-path TF-CrossNet†

Mixture 79.11 90.97 90.05 90.65
Reverb-noisy 8.52 50.70 48.18 49.03
WSJ 6.45 5.15 5.26 5.19
Direct-path 6.16 5.56 5.23 5.26
TF-CrossNet 6.30 5.94 5.74 5.49

In Table II, we compare the ASR performance among AMs trained
on different data. The reverberant-noisy speech is denoted as reverb-
noisy and mixture denotes the unprocessed two-talker mixture. In
the last row, given the TF-CrossNet output, the task-standard AM
produces 6.30% WER, while if the training data is switched to direct-
path speech, the WER gets lowered to 5.74%, outperforming the
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TABLE III: cpWER (in %) results for different separation and diarization methods on LibriCSS.

Separation Method Diarization Method ASR
Overlap Ratio

Avg.
0S 0L 10% 20% 30% 40%

Unprocessed Oracle Our E2E 3.80 3.61 9.60 16.67 24.97 34.29 17.08
SSND [21] Oracle E2E 4.04 3.97 3.37 3.54 4.51 4.66 4.04
SSND Oracle Our E2E 3.62 3.49 3.40 3.56 4.19 4.11 3.77
SSND Oracle (w/ relaxation) Our E2E 2.47 2.38 2.31 2.48 3.12 3.15 2.69
Unprocessed [21] X-vector + SC [38] E2E 13.95 12.20 20.12 29.64 35.06 41.81 27.01
Unprocessed X-vector + SC Our E2E 11.59 11.26 19.01 26.68 32.24 39.48 24.83
SSND [21] MC-EEND E2E 5.56 3.52 3.98 4.76 5.58 6.55 5.13
SSND MC-EEND Our E2E 4.27 2.41 3.25 3.38 4.21 4.95 3.86

previous best [10] by 14.3% relatively. This switch elevates the ASR
performance with only a third of training utterances. It demonstrates
that with a strong separation frontend, the backend does not have to be
trained on noisy speech. The mismatch between frontend output and
backend noisy training data degrades the recognition performance of
the mainstream approach. Note that the AM trained on TF-CrossNet
separated training set achieves 5.49% WER. However, this backend
depends on the pre-trained TF-CrossNet, so it is treated as our
performance upperbound with TF-CrossNet. When a better frontend
is available, retraining this backend is required to achieve optimal
performance, making it less preferred. The results suggest training
the ASR backend on clean speech with a strong multi-talker speaker
separation frontend to elevate recognition performance over an ASR
backend trained on noisy speech.

B. Results on LibriCSS

We report the cpWER results of the proposed system on the
LibriCSS corpus in Table III. On unprocessed multi-talker speech
mixture, with x-vector and SC (spectral clustering) diarization method
[38], E2E ASR model achieves 27.01% cpWER and our E2E model
lowers it to 24.83%. With MC-EEND and SSND, we achieve 3.86%
cpWER, with only 0.09% gap to the result from oracle diarization.
Compared with the 1.09% cpWER gap from 5.13% to 4.04% in
[21], WRConformer shows strong robustness to diarization error as
a backend for CSS task.

Further comparing the cpWER results of the proposed system with
speaker diarization and the system with oracle utterance boundaries,
we noticed that the proposed system outperforms the oracle system
in 0L, 10%, 20% overlap ratio conditions, which means that the
oracle decision boundaries can be further relaxed, since they may
introduce extra insertion and deletion errors. We apply a relaxation
collar (250 ms by tradition for speaker boundary [39]) to both sides of
the oracle utterance boundaries for each speaker and achieve 2.69%
average cpWER, much lower than the 3.77% result from non-relaxed
boundaries. This finding indicates room for further improvement
despite the subtle performance gap between our system and the
system with oracle diarization.

The comparison of the proposed system with other systems on
speaker-attributed ASR is shown in Table IV. The E2E ASR model
of baselines is based on Transformer and WRComformer is based
on Conformer. According to the ESPnet LibriCSS recipe [26], the
Transformer-based ASR model outperforms the Conformer-based
model. Our system with WRConformer successfully outperforms the
previous best with the Transformer-based ASR model by 24.8% rel-
atively, updating the ESPnet findings. The 3.86% cpWER represents
the state-of-the-art result on LibriCSS with ASR backend trained
on LibriSpeech, without leveraging self-supervised learning features

TABLE IV: Performance comparisons of speaker-attributed ASR systems
on LibriCSS.

Ref. Separation Method Diarization Method ASR cpWER (%)
[40] CSS DOA-based TDNN-F [38] 12.98
[38] CSS X-vector + SC E2E 12.7
[41] - - SA-ASR 11.6
[42] Speakerbeam TS-VAD E2E 18.8
[42] GSS TS-VAD E2E 11.2
[43] TS-SEP E2E 6.42
[21] SSND E2E 5.13
Ours SSND Our E2E 3.86

extracted by models such as WavLM [44]. The results demonstrate
that separately improved ASR focusing on clean speech elevates the
overall performance in a decoupled system.

V. CONCLUDING REMARKS

We have proposed a decoupled approach to elevate the performance
of multi-talker ASR through a multi-channel speaker separation fron-
tend. With powerful separation frontends available, an ASR backend
trained on noisy speech may be suboptimal due to the mismatch
between backend training data and separated speech. The proposed
decoupled approach trains the frontend and backend separately, with
the backend focusing on clean speech only. On SMS-WSJ, we achieve
a word error rate of 5.74%, which outperforms the previous best
trained on reverberant-noisy speech by 14.3% relatively, with a
backend trained on clean speech using a third of training utterances.
On LibriCSS, we elevate the ASR performance to a 3.86% cpWER,
outperforming the previous best by 24.8% with the same training
data. In the proposed approach, the capability of frontend separation
can be readily evaluated by the backend recognition performance.
Future work includes extending the decoupled approach to robust
ASR systems with restricted resources and reduced model sizes, and
to more challenging far-field environments.
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