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Abstract—Massive multiple-input multiple-output (M-MIMO)
provides better efficiency and coverage than conventional MIMO.
Efficient detector, being indispensable for M-MIMO, is the focus
of nowadays research. For M-MIMO, MMSE detector with exact
matrix inversion works well but suffers from complexity, not to
mention the performance degradation in ill-posed cases. Thus,
Landweber detector (LD) and improved Landweber detector
(ILD) are considered. In this paper, the compressed Landweber
detector (CLD) is proposed with much lower complexity but
the same performance as ILD. Numerical results show that
for 128 × 8 MIMO with 64-QAM, CLD approximates MMSE
detector with lower complexity. When BER = 10−4, the gap
is only 0.24 dB with 2 iterations. When antenna configuration
is 128 × 60, CLD can achieve 82% complexity reduction than
ILD. Unified hardware architecture of ILD is proposed. Folding
is considered for further reduction. With the same hardware as
ILD, architecture of CLD is finally proposed.

Keywords—Massive MIMO, detection, compressed Landweber,
efficient hardware.

I. INTRODUCTION

Massive multiple-input multiple-output (M-MIMO) is a
key technology for 5G wireless [1, 2]. By equipping hundreds
of antennas at transmitters and serving tens of antennas of
users [3], M-MIMO provides massive boost in interference
reduction, spectral efficiency, link reliability, and transmit-
power efficiency over small-scale MIMO [4], where point-to-
point MIMO links are the focus.

With massive antennas in M-MIMO uplink, one major
concern for data detection is the computational complexity.
With the growth of number of antennas, the traditional detec-
tors using zero forcing (ZF) [5] and minimum mean square
error (MMSE) [6] will result in drastic complexity increase
for matrix inversion [7]. Thus, iterative detection algorithms
are proposed to balance the complexity and detection perfor-
mance. For instance, methods like Gauss-Seidel [8], conjugate
gradient (CG) [9, 10], and conjugate residual (CR) [11] are
proposed. Meanwhile, precondition is also proposed to achieve
better performance [12, 13], especially for ill-posed conditions.
However, designers are expecting detectors which can directly
take care of ill-posed problems without preconditioner.

To this end, in this paper, a linear algorithm named
Landweber detection (LD) is considered, which is usually used
in solving ill-posed problems [14] by using series of matrix

polynomials. It is worth noting that LD is not a derivation or
approximation of MMSE, but in a different way. However, LD
converges slowly and is not feasible for M-MIMO detection.
Thus, by optimizing the relax factor of LD, improved Landwe-
ber detection (ILD) is proposed in [15] for lower complexity
and faster convergence. However, the complexity of ILD is
high. In this paper, by substituting each matrix-matrix product
in ILD with matrix-vector product, compressed version of ILD
(CLD) is proposed to reduce the computational complexity.
Numerical results under different antenna configurations and
different iterations are given to demonstrate the advantages.

To provide a reference for hardware architecture, com-
putational complexities of ILD and CLD are elaborated and
compared with exact Cholesky decomposition scheme [7].
Then a unified design method proposed in [16] is adopted to
help design the hardware architecture of ILD. In this paper,
ILD is implemented by using iterative modules. To avoid
the high cost of the direct implementation of ILD, folding
transformation is utilized for simplification and efficiency.
Furthermore, architecture of low-complexity CLD is proposed
with the same hardware requirement as ILD.

The remainder of the paper is organized as follows. Sec-
tion II goes over the system model and linear detection of M-
MIMO systems. Section III presents the traditional Landweber
detection and the improved version of it. The optimized ILD is
proposed as CLD in the same section. Numerical comparison is
given in Section IV. In Section V, computational complexity
is elaborated and compared with different approaches. Then
unified hardware architecture of ILD and its efficient version
are proposed. Afterwards, architecture of CLD is proposed.
Finally, Section VI concludes the entire paper.

Notation: In this paper, the lowercase and upper bold
face letters stand for column vector and matrix, respectively.
The operations (.)T and (.)H denote transpose and conjugate
transpose, respectively. The vector α in the k-th iteration is
αk. E(.) denotes the expectation operation. ρr(A) denotes the
spectrum radius of matrix A. ∇f(s) calculates the gradient of
function f(s). Computational complexity is denoted in terms
of complexed-valued multiplication number of the algorithm.

II. PRELIMINARIES

Consider an uplink of a M-MIMO system with N antennas
at the base station (BS), which simultaneously serves M
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single antenna users. Here, N is always much bigger than M
(N >> M ). The transmitted signal vector and received vector
are denoted by s = [s1, s2, ..., sM ]T and y = [y1, y2, ..., yN ]T ,
respectively, where s ∈ CM , y ∈ CN and the transmitting
power of each user antenna is E(|si|2) = Es = 1. Then the
system model is described as

y = Hs+ n, (1)

where H is an N × M uplink channel matrix, n is the
vector representing circularly symmetric complex Gaussian
distributed noise with zero-mean and variance σ2. Also, the
average signal-to-noise-ratio (SNR) per receive antenna is
defined as SNR = MEs/σ

2.

According to MMSE equalization scheme, at the BS side,
the estimate of the transmitted symbol vector ŝ is

ŝ = (HHH+ σ2IM )−1HHy = Ay, (2)

where the matrix I is identity matrix with dimension M , and
the detection matrix A is defined based on Gram matrix G:

A = (G+ σ2IM )−1HH , (3)

where G = HHH.

For other linear methods like ZF, detection matrix A is

A = (HHH)−1HH . (4)

Thus, computation of matrix A is very important. Never-
theless, computational complexity of exact matrix inversion in
A is O(M3). Methods such as Cholesky decomposition based
method are not suitable for adoption in M-MIMO detection
when the scale of it increases.

III. COMPRESSED M-MIMO LANDWEBER DETECTION

In this section, Landweber detection method for M-MIMO
detection is introduced. Then by optimizing relax factor of LD,
improved version of LD is introduced as ILD. Finally, CLD is
proposed to reduce the computational complexity of ILD.

A. Landweber Detection

To specify LD, linear equation Eq. (1) is taken into consid-
eration first. Suppose the noise vector is neglected, vector n in
Eq. (1) becomes zero vector, which makes Eq. (1) become an
ideal linear equation. Let y∗ denote the exact received signal
vector without noise, which is y∗ = Hs. Assuming matrix H
and received signal vector y are known exactly, then it can be
deduced from Eq. (2) that

E∥y − y∗∥22 = Nσ2. (5)

According to [17], a linear ill-posed problem is formed to
get the optimal estimation of vector s from received signal vec-
tor y which is noise-polluted in Eq. (2). Landweber algorithm
is perfect in solving ill-posed problems and thus is feasible in
this application scheme.

To solve M-MIMO detection problems, LD aims at obtain-
ing the optimal estimation of transmitted signal s. Estimation
of s is denoted by ALy in which

AL = ω

T∑
t=1

(IM − ωHHH)tHH , (6)

where T is the terminal factor to make a trade-off between per-
formance and computational complexity, which is the iteration
number K in real application and ω is the relax factor which
controls the convergence of LD, which meets the restriction

0 < ω <
1

ρr(HHH)
. (7)

Key step of LD can be written as

sk+1 = sk − ωHH(Hsk − y), (8)

by supposing function f(s) = ∥Hs− y∥22/2, Eq. (8) is

sk+1 = sk − ω∇f(s), (9)

which is a special case of gradient descent methods.

To better describe LD, LD for M-MIMO systems is elab-
orated in Algorithm 1 and is shown in the form of iteration.

Algorithm 1 Landweber Detection for M-MIMO Systems

Input: H, ω and y
1: s0 = ωHHy and r0 = 0
2: for k = 0, . . . ,K do
3: rk+1 = y −Hsk
4: sk+1 = sk + ωHHrk+1

5: end for
Output: ŝ = sK+1

B. Optimization of Relax Factor

As can be seen in Section III-A, LD is explicitly described
in Algorithm 1. However, the value of relax factor ω is
pending, which can be set by users before. To achieve better
performance, it can be optimized as shown in [15]. Taking
advantage of Eq. (6), the matrix polynomial converges fast
when the value of ρr(IM−ωHHH) is small. Thus relax factor
ω can be optimized to ω∗ by solving

ω∗ = argmin ρr(IM − ωHHH). (10)

Seen in [15], solution to optimization function (10) is

ω∗ =
1

N +M
, (11)

where N and M are antenna numbers of BS and user.

C. Improved Landweber Detection

By substituting ω of LD with optimized relax factor ω∗,
convergence performance of LD can be improved. Meanwhile,
computation structure of Eq. (6) can be derived into another
form,

Ak+1 = (2IM −AkH)Ak, (12)

where detection matrix A is updated after each iteration.
Meanwhile, by computing in this way, k times of iteration of
ILD has the same performance with 2k − 1 times of iteration
of LD, which can improve the convergence rate of ILD.

Synthesizing these two optimizations, improved Landweber
detection [15] can achieve optimal performance compared with
LD. Computation process of ILD is shown in Algorithm 2.



Algorithm 2 Improved Landweber Detection

Input: H and y
1: ω = 1

N+M , A0 = ωHH and R0 = 0
2: for k = 0, . . . ,K do
3: Rk+1 = 2IM −AkH
4: Ak+1 = Rk+1Ak

5: end for
Output: ŝ = AK+1y

D. Proposed Compressed Landweber Detection

To avoid too much matrix-matrix product of ILD, a com-
pressed version of ILD is proposed in this paper as compressed
Landweber detection (CLD). Computation of ILD can be sim-
plified by another way, in which every matrix-matrix product
of ILD can be substituted by matrix-vector product.

Post-multiplying y on both sides of Eq. (6) and denoting
IM − ωHHH by R, CLD can lower the complexity from
matrix-matrix product to matrix-vector product. By multiply-
ing 2k times of matrix R, CLD can achieve the same perfor-
mance with ILD while reduces the computational complexity
of ILD to a large extent. Computation process of CLD is shown
in Algorithm 3.

Algorithm 3 Compressed Landweber Detection

Input: H and y
1: ω = 1

N+M , R = IM − ωHHH and s0 = ωHHy
2: for k = 0, . . . ,K do
3: sk+1 = sk +R2kss
4: end for

Output: ŝ = sK+1

IV. NUMERICAL RESULTS AND COMPARISONS

As is mentioned in Section III-A, LD can be classified as
a member of gradient descent detection methods. Thus in this
section, ILD and CLD are compared with another gradient
descent detection method CG [9] and exact Cholesky decom-
position scheme. Numerical results for different M-MIMO
configurations are given to validate CLD and ILD, meanwhile
comparisons of each specific algorithm are given. Adopting 64-
QAM scheme and using independent and identically distribut-
ed (i.i.d.) Rayleigh fading channel model, BER comparison
between each method and three antenna configurations are
considered. Here iteration time K is considered to be 2, 3
and 4, respectively.

It can be seen from three figures that as antenna ratio N/M
increases, performance of CLD, ILD and CG increase as well.
With optimized relax factor, ILD and CLD outperform CG
under the same condition in each iteration. When iteration
number k ≥ 3, it can be seen in Fig. 2 and Fig. 3 that ILD and
CLD can achieve nearly the same performance with Cholesky
decomposition scheme and the performance gap is less than 0.1
dB after 3 iterations. ILD and CLD can still perform well after
only 2 times of iteration. Take Fig. 2 for instance, after 2 times
of iteration, ILD and CLD have more than 6 dB advantage over
CG when BER=10−2 and has only 0.37 dB loss compared
with CG which iterates 3 times when BER=10−3. Fig. 3 can
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Fig. 1: BER performance comparison with N×M = 128×32.
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Fig. 2: BER performance comparison with N×M = 128×16.
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Fig. 3: BER performance comparison with N ×M = 128×8.



validate the advantage of ILD and CLD over CG further. When
iteration time k = 2, ILD and CLD have 5.13 dB advantage
over CG when BER=4×10−4. Besides, as antenna ratio N/M
increases, performance gap between CLD and CG after 2 times
iteration increases, which also showcases the competitive BER
performance of ILD and CLD.

V. HARDWARE ARCHITECTURE

In this section, computational complexities are compared
to elaborate complexity of ILD and CLD. Then hardware
architecture of ILD is proposed. To better implement ILD,
an efficient way to design hardware architecture of ILD is
adopted and then efficient architecture of ILD is proposed.
Finally, architecture of low-complexity CLD is proposed.

A. Computational Complexity

In this section, computational complexity is analyzed in
terms of numbers of complex multiplications of algorithms.
Computational complexities of ILD and CLD are elaborated
in contrast with CG and Cholesky decomposition scheme. The
exact value of computational complexity is summarized in
Table I to show the difference between three methods and
Cholesky means the exact Cholesky decomposition scheme. K
is the number of iterations.

TABLE I: Complexity Comparison of Different Algorithms.

Algorithm Number of complex-multiplications

ILD 2KNM2 +N

CLD NM2 +NM + (2K − 1)M2

CG NM2 +K(2M2 + 4M)

Cholesky NM2 + 5
6
M3+ 3

4
M2+ 4

3
M

To make the comparison more explicit, complexity of
three methods are shown in Fig. 4. In this scheme, number
of antenna at BS is 128, SNR is set to be 20 dB. As is
mentioned in Table I, complexity of ILD is higher than other
algorithms while CLD lowers the complexity of ILD to a large
extent. Meanwhile, main complexity of CLD is contributed
by computing matrix HHH, which is also needed in CG
or Cholesky decomposition scheme. When number of user
antenna M is 60, CLD can achieve nearly 72% complexity
reduction compared with ILD after 2 iterations and nearly
82% reduction after 3 times of iteration compared with ILD
after 3 times of iteration. It is also worth noting that CLD
has similar complexity to CG and has lower complexity than
Cholesky decomposition, which shows the feasibility of CLD
in M-MIMO systems.

B. Proposed Unified Architecture of ILD

To help the implementation of ILD, unified hardware archi-
tecture of ILD is proposed in this paper. Firstly, a normalizing
design method is adopted and then hardware architecture of
ILD is designed under the guidance of this method.
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Fig. 4: Complexity comparison of different algorithms.

1) Normalizing Design Method: To help the flexibility of
hardware, for instance, users can change their detectors with
existing resources as long as they want to, a normalizing
design method is needed. With the application of such method,
architecture of detectors can be reusable, which will save the
hardware resources in some sense. Method in [16] introduces
two modules, while in this paper, only iterative module is
needed.

Iterative module is a module made up of two operating
units, a multiplier and an accumulator, which performs a
multiply and accumulation (MAC) operation.

yx

a b

Fig. 5: Iterative module of normalizing design method.

Function of iterative module can be denoted by y = x+ab.
Besides this module, only some multipliers and delayers
are needed, which improves the flexibility of architectures.
By adopting this design method, hardware resources can be
reserved for further usage.

2) Unified Architecture of ILD: With the optimized relax
factor, ILD has optimized performance. By setting optimized
relax factor before and optimize the architecture of compu-
tation process of LD, ILD only needs one iterative module.
Unified hardware architecture of ILD is shown in Fig. 6.

In terms of this architecture, channel matrix H and received
signal y are needed. Input from the left of the delayer is the
initial value of detection matrix A. Other modules have the
same function with modules of the architecture of LD. It can
be seen that by optimizing relax factor, architecture of ILD
only needs one computation of ω, which is more efficient than
the architecture of LD.
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C. Proposed Efficient Architecture of ILD

Although unified architecture of ILD is efficient and need
only one module, computation process of ILD contains two
steps. Folding transformation [18] is an efficient way to save
the hardware resource of ILD and by folding, an efficient
architecture of ILD is proposed.

In the architecture design of digital signal processing
(DSP), saving functional units like multipliers or accumulators
is of great significance. Folding transformation can systemati-
cally control the circuit and by this, multiplexing of functional
units can be achieved, thus improves the efficiency of the
hardware. Generally, folding can save the number of functional
units of the architecture. However, it may introduce more
delayers, which will increase the complexity of the hardware.
Thankfully, hardware architecture of ILD only involves one
delayer, thus folding will not affect the complexity of hardware
too much. Besides, folding sacrifices the latency for the space
consumption. Fig. 7 shows the proposed efficient hardware
architecture of ILD.
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Fig. 7: Efficient hardware architecture of ILD.

Compared with the original unified architecture of ILD in
Fig. 6, efficient architecture of ILD saves a multiplier and add a
delayer for storage. Dividing the computation into two periods,
multiplier in iterative module has two functions in two periods,
respectively.

1) Period 1: In this period, multiplier serves for the
multiplication in step 3 of Algorithm 2, which computes the
multiplication of detection matrix Ak and channel matrix H.

By connecting the nodes marked with “1”, iterative module
functions as usual.

2) Period 2: In this period, multiplier serves for the multi-
plication in step 4 of Algorithm 2, which updates the value
of detection matrix by multiplying former detection matrix
Ak and intermediate matrix Rk+1. In period 2, multiplier
disconnects nodes marked with “1” and connects nodes marked
with “2”. By switching nodes, multiplexing of the multiplier
can be realized.

Hardware requirement of ILD is not large, however by
folding transformation, hardware requirement of ILD can be
reduced further. Dividing ILD into three stages, initialization
stage, ILD algorithm stage and output stage, respectively.
Hardware of unified architecture of ILD and efficient archi-
tecture of ILD in initialization stage and output stage both
need one multiplier, which cannot be optimized. However,
in ILD algorithm stage, architecture can be optimized by
folding transformation, hardware requirement comparison of
two architectures in ILD algorithm stage is shown in Table II.

TABLE II: Hardware Requirement of Different Architectures.

Architecture Accumulator Multiplier Delayer

Unified 1 2 1

Efficient 1 1 2

In Table II, “Unified” means the unified architecture of
ILD proposed in Section V-B2 and efficient architecture of
ILD is denoted by “Efficient”. As can be seen that efficient
architecture of ILD only needs one accumulator and one
multiplier, which is the most simple architecture and the need
of this architecture is easy to meet. Compared with unified
architecture of ILD, efficient architecture sacrifices time for
space because it needs two periods to compute signals and
realize the multiplexing of the multiplier. However, users can
switch the hardware as they want to for the iterative module
is easy to be reused.

D. Proposed Architecture of CLD

Because of the lower complexity compared with ILD, CLD
is more feasible than ILD. Hardware architecture of CLD is
designed as is shown in Fig. 8.
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Fig. 8: Hardware architecture of CLD.



As is shown, hardware architecture of CLD contains two
units, preprocessing unit and compressed Landweber algorithm
unit. With the input of channel matrix and received signal
vector, preprocessing unit functions as initialization of each
matrix or vector. Then signals are sent to compressed Landwe-
ber algorithm unit, which functions as CLD algorithm and
computes signals in three periods, respectively.

1) Period 1: In period 1, node with “1” connects and the
estimation of transmitted signal s is multiplied with interme-
diate matrix R. Left input of s is the initialization operation.

2) Period 2: In this period, delayer with “D” stores the
multiplication of matrix R and Rnsk and in this period, node
with “2” connects thus a loop forms. The loop terminates when
n = 2k and the delayer stores the value of R2ks.

3) Period 3: In this period, nodes with “3” connect and
with the value of the delayer with “D”, signal s can be updated
by an accumulator.

It is worth noting that compressed Landweber algorithm
unit requires one multiplier, one accumulator and two delayers,
which is same with that of efficient architecture of ILD. Thus
with the same hardware requirement and lower complexity,
CLD is more suitable for real application.

VI. CONCLUSION

In this paper, LD is introduced as a low-complexity detec-
tion method for ill-posed problems. Then the improved LD is
introduced as ILD, with optimized relax factor. Optimizing
ILD further, CLD has lower complexity but maintains the
same performance as ILD. Being special cases of gradient
descent algorithm, ILD and CLD are compared with another
gradient-based algorithm CG. Numerical results elaborate the
comparison of ILD, CLD, CG and Choleksy decomposition
scheme, which validate the feasibility of CLD in M-MIMO
detection. Computational complexity analysis shows CLD can
lower the complexity of ILD to a great extent in M-MIMO
scheme. Finally by adopting a normalizing design method, uni-
fied hardware architecture of ILD is proposed. Then by folding
transformation, efficient architecture of ILD is proposed. With
the same cost, hardware architecture of low-complexity CLD
is finally proposed.
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