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Abstract—In nowadays wireless communication systems, mas-
sive multiple-input multiple-output (MIMO) technique brings
better energy efficiency and coverage but higher computational
complexity than small-scale MIMO. For linear detection such as
minimum mean square error (MMSE), prohibitive complexity
lies in solving large-scale linear equations. For a better trade-
off between BER performance and computational complexity,
iterative linear methods like conjugate gradient (CG) have been
applied for massive MIMO detection. By leaving out a matrix-
vector product of CG, conjugate residual (CR) further achieves
lower computational complexity with similar BER performance
compared to CG. Since the BER performance can be improved
by utilizing pre-condition with incomplete Cholesky (IC) factor-
ization, pre-conditioned conjugate residual (PCR) is proposed.
Simulation results indicate that PCR method achieves better
performance than both CR and CG methods. It has 1 dB
performance improvement than CG at BER = 5×10−3. Analysis
shows that CR achieves 20% computational complexity reduction
compared with CG when antenna configuration is 128×60. With
the same configuration, PCR reduces complexity by 66% while
achieves similar BER performance compared with the detector
with Cholesky decomposition. Finally, the corresponding VLSI
architecture is proposed in detail.

Keywords—Massive MIMO detection, conjugate gradient, con-
jugate residual, pre-condition, VLSI.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is a key
technique in for the next generation wireless systems [1] and
has been incorporated into wireless broadband standards like
the 3rd generation partnership project (3GPP) long term evo-
lution (LTE) and IEEE 802.11n [2]. By equipping hundreds of
antennas at transmitters and serving relatively a small number
of users [3], massive MIMO provides significant improvement
in spectral efficiency, interference reduction, transmit-power
efficiency, and link reliability [4] compared with the conven-
tional small-scale MIMO, where point-to-point MIMO links
are mainly focused.

Because of the large antenna number at base stations (BSs)
or user side, computational complexity becomes unaffordable
in massive MIMO detection. Among existing detections, zero
forcing (ZF) is a basic way, which neglects the effect of
noise [5]. However, its performance is not satisfactory. Though
linear scheme like minimum mean square error (MMSE) [6]
tries to make a trade-off between performance and complexity,
its computation complexity still increases drastically as the
number of antennas grows. For a massive MIMO system
with N × M dimensional channel matrix H, computational
complexity of MMSE inversion is O(M3), which makes it

costly in real application [7–10]. Thus, iterative linear solvers
are proposed for further complexity reduction [11–13]. For
instance, methods like Gauss-Seidel [11] and conjugate gradi-
ent (CG) are adopted, among which CG effectively optimizes
the MMSE scheme with reduced computational complexity of
O(M2) with negligible performance loss.

It is believed that algorithms for massive MIMO detection
can be further improved for either lower complexity or better
performance. Considering the computation process of CG,
some steps can be eliminated in specific way. CG involves
three matrix-vector multiplications. For lower complexity, by
leaving out a matrix-vector multiplication of CG, conjugate
residual (CR) is proposed in this paper, which is also capable
of solving Hermitian problems in general. However, straight-
forward application of CR in massive MIMO detection does
not offer better performance than CG in some cases. Therefore,
an improved CR is proposed by introducing pre-conditioner,
named PCR. The pre-condition algorithm called incomplete
Cholesky (IC) factorization is introduced for CR. Numerical
results of the aforementioned three methods have demonstrated
the advantages of the proposed CR and PCR methods. Since
the MMSE filtering matrix is diagonal-dominant for uplink
massive MIMO systems, the iteration number is chosen to be
2, 3, or 4, respectively. Finally, the hardware architecture of
PCR method is also given.

The remainder of the paper is organized as follows. Sec-
tion II goes over the system model and MMSE detection of
massive MIMO detection. Section III presents the proposed
CR-based algorithm and the pre-conditioned version of it.
Performance comparisons are given in Section IV. Section V
elaborates the computational complexity and hardware archi-
tecture. Finally, Section VI concludes the entire paper.

Notation: In this paper, the lowercase and upper bold
face letters stand for column vector and matrix, respectively.
The operations (.)T and (.)H denote transpose and conjugate
transpose, respectively. The entry in the i-th row and j-th
column of A is A(i,j). The vector α in the k-th iteration is αk.
Computational complexity is denoted in terms of complexed-
valued multiplication number of the algorithm.

II. PRELIMINARIES

Consider an uplink of an orthogonal frequency-division
multiplexing (OFDM)-based massive MIMO system with N
antennas at the base station, which simultaneously serves M
single antenna users. Here, N is always much bigger than M
(N >> M ). The transmitted signal vector and received vector
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are denoted by s = [s1, s2, ..., sM ]T and y = [y1, y2, ..., yN ]T ,
respectively, where s ∈ CM , y ∈ CN . Then the system model
is described as

y = Hs+ n, (1)

where H is an N ×M uplink channel matrix, n is the vector
representing Additive White Gaussian Noise (AWGN) with
zero-mean and variance σ2. According to MMSE scheme, At
the base station side, the estimate ŝ of the transmitted symbol
vector is

ŝ = (HHH+ σ2IM )−1HHy = A−1ỹ, (2)

where the matrix I means identity matrix with dimension M ,
and the MMSE filtering matrix A is defined base on Gram
matrix G:

A = G+ σ2IM , (3)

where G = HHH.

Correspondingly, output of matched filter ỹ is

ỹ = HHy. (4)

Nevertheless, computational complexity of exact matrix
inversion A−1 is O(M3). Methods such as Cholesky decom-
position based method are not suitable for adoption in massive
MIMO detection when the scale of it increases.

III. PROPOSED CONJUGATE RESIDUAL METHOD

In this section, CG method for MMSE linear detection is
firstly introduced. Then a new low-complexity method with
the prototype of CG is proposed, named CR method, which
can be applied in solving Hermitian problems. By adopting IC
factorization, an improvement algorithm of CR is proposed as
PCR, which is capable of better performance.

A. Conjugate Gradient Method

As mentioned in Section II. MMSE linear detection can
be denoted by equation ŝ = A−1ỹ, which can be seen as the
typical linear problem. CG is a method that can be used in
such problem [14], and it has its advantage by lowering the
computational complexity.

Additionally, for massive MIMO uplink, channel matrix
H is asymptotically orthogonal, which means that the MMSE
filtering matrix is diagonally dominant. Thus, the channel
matrix can be viewed as sparse and has large scale [15]. CG
is a method for solving symmetric positive definite (SPD)
matrices while filtering matrix A can be proved to be SPD.
In conclusion, CG is a feasible method to reduce computa-
tional complexity from O(M3) to O(M2) by substituting the
inverse with iteration method while achieves acceptable BER
performance.

B. Proposed CR-based Detection

Consider CG invloves too much complex multiplications,
computation process can be simplified by leaving out a matrix-
vector product in every iteration of CG, CR is proposed as a
new iterative method [16] for massive MIMO detection. As is

mentioned above, the solution to Eq. (2) can be computed by
solving the following optimization problem,

ŝ = argmin
ŝ∈CM

∥ỹ −Aŝ∥, (5)

where A = HHH + σ2IM is the regularized uplink Gram
matrix. Similar to CG, CR computes ŝ iteratively rather than
computes the exact inverse of matrix A, which is the ad-
vantage compared to Cholesky Inversion. Also, computational
complexity is effectively reduced compared with CG. The
solution to Eq. (3) can be computed (or approximated) by
using CR algorithm, and computation process of CR is shown
in Algorithm 1.

Algorithm 1 CR for MMSE Detection
Input: A and ỹ

1: b = ỹ, v0 = 0, r0 = b, p0 = r0
2: e0 = Ap0, m0 = Ar0
3: for k = 1, . . . ,K do
4: αk = rHk−1mk−1/∥ek−1∥2
5: vk = vk−1 +αkpk−1

6: rk = rk−1 −αkek−1

7: mk = Ark
8: βk = rHk mk/r

H
k−1mk−1

9: pk = rk + βkpk−1

10: ek = mk + βkek−1

11: end for
Output: ŝ = vk

Algorithm 1 summarizes the CR-based data detection for
massive MIMO system. From the derivation of CR method,
Apj is replaced by ej in each iteration, which can leave out
the matrix-vector product in the algorithm of CG with the
objective of lower complexity.

Besides, CR-based method can be applied when the system
is Hermitian, while CG is a method for solving SPD problems.
In contrast, CR is more suitable for massive MIMO systems.

C. Comparison between CG and CR

Comparison between CR and CG is mainly analyzed in
three parts in this section.

1) Computation Method: Consider the initial estimate of
ŝ to the MMSE linear detection is ŝ0, and rk = ỹ − Aŝk is
the residual vector for the approximation ŝk within the k-th
Krylov subspace. The exact solution of the problem is denoted
by ŝ∗. CG is a method to solve MMSE linear problem by
minimizing the function ∥ŝ∗ − ŝk∥2A ≡ (̂s∗ − ŝk)

TA(̂s∗ − ŝk),
known as the energy norm of error. CR is a method to minimize
∥rk∥ = ∥ỹ−Aŝk∥. From the differences between CR and CG
it could be seen that CR is proposed to deal with the residual
energy, which explains the name of the method in the physical
way.

2) Performance: CR is a algorithm from the prototype of
CG. Thus, two algorithms have similar performances. Howev-
er, as the iteration time increases, performance gap between
two methods reduces gradually.



3) Complexity: Computational complexity reduction is the
main characteristic of the proposed CR method. With the
reduction of one matrix-vector product in each iteration, com-
plexity is effectively lowered. To elaborate the improvement,
CR need nearly the same complexity to CG when iteration
time is 4 while that of CG is 3. Despite the latency, CR can
achieve better performance with the same complexity.

D. Pre-Conditioned CR Method

Better performance is needed in practical application, while
CR may not competitable in sense of performance. Thus an
improvement of CR is necessary, pre-condition is a good
way to improve the performance of specific algorithms, then
incomplete Cholesky (IC) factorization is used to pre-condition
the CR system matrix [17]. That is, matrix A can be pre-
conditioned by IC method like [12]. To pre-condition the
system matrix, a pre-conditioner matrix M can be utilized,
then the linear equation can be rewritten as,

M−1Aŝ = M−1ỹ. (6)

In SPD system, pre-conditioner can be written as M =
LLT . In pre-condition process, pre-conditioner LLH is calcu-
lated efficiently to approach the original matrix. The function
of pre-condition is to make the matrix optimal to be disposed.

(LLH)−1A ≈ I, (7)

where I is an identity matrix.

To determine the set of the pre-conditioned matrix, a
specific way should be adopted. Consider the base-station-to-
user ratio varies, this ratio is taken into consideration. Also,
a constant parameter ν is determined by the requirements of
performances. Thus the threshold value can be defined as,

δ = ν(1−M/N)A(i,i). (8)

Take the threshold value δ into calculation, then the compu-
tation process of IC factorization is shown as Algorithm 2.

Algorithm 2 Incomplete Cholesky Factorization

Input: A, δ, and M
N

1: for j = 1 : 1 : M do
2: for i = j : 1 : M do
3: if A(i,j) ≤ δ then
4: L(i,j) = 0
5: else
6: Σ = 0
7: for k = 1 : 1 : j − 1 do
8: Σ = Σ+ L(i,k)L(j,k)/L(k,k)

9: end for
10: L(i,j) = A(i,j) − Σ
11: end if
12: end for
13: end for
Output: L

After the calculation of L in Algorithm 2, detection result
in traditional CR method can be easily calculated with pre-
condition. Because matrix M serves as a pre-conditioner in
computation process, then PCR algorithm is as Algorithm 3.

Algorithm 3 Proposed PCR Method
Input: A, L and y

1: b = ỹ, v0 = 0, r0 = L−1b, p0 = (LLH)−1b
2: m0 = Ar0, e0 = Ap0

3: for k = 1, . . . ,K do
4: αk = rHk−1mk−1/∥ek−1∥2
5: vk = vk−1 +αkpk−1

6: rk = rk−1 −αkL
−1ek−1

7: mk = Ark
8: βk = rHk mk/r

H
k−1mk−1

9: pk = L−Hrk + βkpk−1

10: ek = Apk

11: end for
Output: ŝ = vk

E. Proof of Convergence

The estimate ŝk can be proved to support the convergence
of the algorithm [18]. For CR on a SPD system,

∥ŝk∥2 − ∥ŝk−1∥2 = 2αkŝ
T
k−1pk−1 + pT

k−1pk−1 ≥ 0. (9)

Therefore,

∥ŝk∥ ≥ ∥ŝk−1∥. (10)

Then, final solution can be expressed as ŝl = ŝ∗,

sl = sl−1 + αl−1pl−1

= · · ·
= ŝk + αk+1pk + · · ·+ αl−1pl−1

= ŝk−1 + αkpk−1 + αk+1pk + · · ·+ αl−1pl−1.

(11)

From the conclusion above, it can deduced that

∥ŝl − ŝk−1∥2 − ∥ŝl − ŝk∥2

= (̂sl − ŝk−1)
T (̂sl − ŝk−1)− (̂sl − ŝk)

T (̂sl − ŝk)

= 2αkp
T
k−1(αk+1pk + · · ·+ αl−1pl−1)

+ α2
kp

T
K−1pk−1 ≥ 0.

(12)

While for the MMSE linear detection problem, the linear
equation ỹ = Aŝ is to be solved, thus

∥ŝl − ŝk−1∥2A − ∥ŝl − ŝk∥2A
= (̂sl − ŝk−1)

TA(̂sl − ŝk−1)− (̂sl − ŝk)
TA(̂sl − ŝk)

= 2αkp
T
k−1A(αk+1pk + · · ·+ αl−1pl−1)

+ α2
kp

T
k−1Apk−1

= 2αkq
T
k−1(αk+1pk + · · ·+ αl−1pl−1)

+ α2
kq

T
k−1pk−1 > 0.

(13)

The derivation above indicates that the error in energy norm
is strictly decreasing. Hence, the method is valid for massive
MIMO detection.



F. Complexity Analysis

CR leaves out a matrix-vector product in calculation of
α in each iteration of CG, thus complexity of CR method is
reduced. To be clear, M2 complex-value multiplications are
reduced compared with CG and M multiplications are added
in each iteration due to new vector storage.

After IC factorization, performance complexity trade-off
makes complexity of PCR higher, so new complexity is
added to CR. Meanwhile, added complexity is complex, thus
complexity of PCR method is analyzed in detail and each step
is considered as follow:

1) Initialization: initializing r, p and e needs complexity.
Take pre-condition into consideration, Q is the number of
zeros in the lower triangle matrix, thus number of complex
multiplication is: 3M2 −M − 2Q.

2) Calculating v and r: the complexity needed in calcu-
lating α is two vector-vector products and a matrix-vector
product, while calculating v needs one more vector-vector
product and calculating r needs one product. So the total
number of complex multiplication is: 5M .

3) Calculating p and e: the complexity needed is 2M2 −
2Q for calculating mk and β, then calculating the p and e
needs 2M . Thus number of complex multiplication is: 2M2+
2M − 2Q.

4) Pre-condition: the pre-condition complexity is from the
IC factorization, whose number of complex multiplication is:
((2M2 − 2Q)3/2 − (M2 − 2Q)1/2)/6.

IV. PERFORMANCE COMPARISON

CR is derivated from CG and PCR is an improved CR al-
gorithm, thus performance of three methods and the Cholesky
exact MMSE detection is compared. Consider the massive MI-
MO systems with antenna configurations of N×M = 128×32,
N ×M = 128× 16 and N ×M = 128× 8. The modulation
scheme is 64-QAM. Here ν = 1/9. k is the iteration number.
The performance is shown in Fig.s 1, 2, and 3.
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Fig. 1. BER performance comparison with N ×M = 128× 32.

According to Fig.s 1, 2, and 3, as ratio N ×M increases,
difference between CR and CG is decreasing while that
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Fig. 2. BER performance comparison with N ×M = 128× 16.
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Fig. 3. BER performance comparison with N ×M = 128× 8.

between PCR and CG is increasing. Essence of algorithms
are different, and CR is to minimize the residual energy of
the detection while CG is to minimize the estimation of the
result, high iteration count contribute to the performance of
CR. Better initial condition improves the performance of PCR.

From three figures, performance of CR can be found that
CR has similar performance with CG because the prototype of
CR is CG. While as the iteration time increases, the curve of
CR converges quickly. For iteration time k ≥ 3, CR method
has almost the same performance with CG. PCR method
achieves better performance than both CR and CG, which
corresponds to the objective of application of pre-condition.

Low-complexity algorithm CR achieves similar perfor-
mance to CG. In Fig. 1, it has 0.4dB performance drawback
at BER= 10−2 when iteration time k = 4. However, as ratio
M/N decreases, difference between CR and CG drops, which
can be seen in Fig. 3 that when iteration time k ≥ 3, CR
achieves nearly the same performance with CG. Trade-off by
lowering complexity is not significant in these cases.

PCR has better performance than both CG and CR in
each configuration. At BER= 10−3, the SNR gap is 0.6dB



in comparison with CG in Fig. 2, while at BER= 5 × 10−3,
SNR gap is 1dB in comparison with CG in Fig. 1. While
in Fig. 3, PCR have its SNR advantage over CG by 2dB at
BER= 1×10−3. It is obvious that under different ratio M/N ,
performance of PCR is better than CG.

V. HARDWARE ARCHITECTURE

In this section, computational complexities are compared
to elaborate both CR and PCR. VLSI architecture is also
introduced with processing steps.

A. Computational Complexity

In this section, computational complexity is analyzed in
terms of numbers of complex multiplications of the algorithm.
Computational complexity of CR and PCR are elaborated in
contrast with CG. As is mentioned, CR has its advantage by
leaving out a matrix-vector product and adopt a new vector as a
substitution. After this transform, the algorithm has a change in
essence from minimizing the result to minimizing the residual.

To improve BER performance, PCR achieves better per-
formance than both CR and CG. However, performance and
complexity trade-off makes the computational complexity in-
creases at the base of CR due to the pre-condition. The exact
value of computational complexity is summarized in Table I
to show the difference between three methods.

TABLE I. REQUIRED NUMBER OF COMPLEX
MULTIPLICATIONS

Symbol ŝ

Cholesky Inversion 5
6M

3+ 3
4M

2+ 4
3M

CG k(2M2 + 6M)

CR k(M2 + 7M) + 2M2

PCR
* (M2−2Q)3/2−(M2−2Q)1/2

6
+

k(2M2 + 7M − 2Q) + 3M2 − M − 2Q

* calculates the complexity of PCR method and the variable Q
means the number of zero in the lower triangle matrix L.

To make the comparison more explicit, complexity com-
parisons of three methods are elaborated in Section V-A1 and
Section V-A2. Consider number of antennas at the base station
N is 128, SNR is set to be 20dB, constant parameter ν is 1/9
in terms of PCR.

1) Complexity of CR: With the omission of specific prod-
uct, CR can reduce the complexity compared with CG. As is
shown in Fig. 4, complexity of CR is reduced by nearly 20%
compared with CG when number of antennas at the user side
M is 60. Meanwhile CR achieves almost the same complexity
when iteration time k = 4 with CG of iteration time k = 3.

2) Complexity of PCR: With the affiliation of pre-
condition, complexity of PCR increases at the base of CR.
To achieve relatively higher performance, necessary trade-off
is made. Complexity of PCR is higher than CG while can
lower the complexity of Cholesky inversion by nearly 66%
when M = 60, as is shown in Fig. 5.
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Fig. 4. Complexity comparison between CR and CG.
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Fig. 5. Complexity comparison between PCR and CG.

B. Hardware Architecture

Proposed hardware architecture shown in Fig. 6 includes
three units: 1) preprocessing unit, 2) proposed PCR method
unit, and 3) output unit. Preprocessing unit computes ỹ and
A, and ỹ is denoted by yE in the architecture. Proposed PCR
method unit and output unit compute and output ŝ iteratively,
while ŝ is denoted by sE in the architecture.

1) Preprocessing Unit: In preprocessing unit, output of
matched filter ỹ and channel matrix are processed to give
Gram matrix and pre-conditioner M. Consider A is Hermitian,
M×M lower triangular systolic array is adopted to compute it.
Each processing element (PE) performs a multiply-accumulate
(MAC) operation with same inputs.

2) Proposed PCR Method Unit: In this unit, module IN-
V means matrix inversion. Two inputs of module DIV are
dividend on the left and divisor on the top. Mod module
calculates the modulus of input. Module with r, m, p, e store
the corresponding value in the k-th iteration and the downside
input means initialization. With the output of preprocessing
unit, each iteration of PCR method unit has 6 phases.
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Fig. 6. Hardware architecture of PCR method.

a) In the first phase: With initialization, α is calculated
firstly after DIV module by output of multiplier of rH and m,
along with ∥e∥2, which is the output of Mod module .

b) In the second phase: r can update itself with the
value of α and e by one adder.

c) In the third phase: m is updated through two
multipliers with A and M−1 and the updated r.

d) In the fourth phase: Intermediate variable β is cal-
culated by DIV module with inputs from the current iteration
and the last iteration.

e) In the fifth phase: Vector p is updated by adder with
inputs from r, and multiplication of β and p from last iteration.

f) In the sixth phase: e is calculated for the next
iteration by one adder and one multiplier.

3) Output Unit: In this unit, estimate ŝ are calculated by
v iteratively, v updates itself with the output of PCR method
unit p and α.

With the result in Section IV, output of proposed PCR
method architecture is close to exact solution, thus iteration
time does not need to be large, as mentioned in Section I.

VI. CONCLUSION

In this paper, CR is first introduced to improve the detection
efficiency for massive MIMO systems. Both CG and CR
are introduced and their relationship is shown as well. An
improved version of CR is introduced called PCR to achieve
better performance. Simulations are made to compare three
methods and conventional detection based on exact matrix
inversion. BER performances and computational complexities
indicate that CR is efficient and suitable for low-complexity
detection on massive MIMO while its improved version PCR
can achieve higher BER performance in massive MIMO detec-
tion. Hardware architecture of PCR method is also proposed
in the end. Future work will be directed towards the FPGA
implementation of both CR and PCR detectors for our massive
MIMO platform.
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