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Abstract

Massive multiple-input multiple-output (M-MIMO) technique brings better energy efficiency and coverage but higher
computational complexity than small-scale MIMO. For linear detections such as minimum mean square error (MMSE),
prohibitive complexity lies in solving large-scale linear equations. For a better trade-off between bit-error-rate (BER)
performance and computational complexity, iterative linear algorithms like conjugate gradient (CG) have been applied and
have shown their feasibility in recent years. In this paper, residual-based detection (RBD) algorithms are proposed for M-
MIMO detection, including minimal residual (MINRES) algorithm, generalized minimal residual (GMRES) algorithm, and
conjugate residual (CR) algorithm. RBD algorithms focus on the minimization of residual norm per iteration, whereas most
existing algorithms focus on the approximation of exact signal. Numerical results have shown that, for 64-QAM 128 x 8
MIMO, RBD algorithms are only 0.13 dB away from the exact matrix inversion method when BER= 10~*. Stability of RBD
algorithms has also been verified in various correlation conditions. Complexity comparison has shown that, CR algorithm
require 87% less complexity than the traditional method for 128 x 60 MIMO. The unified hardware architecture is proposed

with flexibility, which guarantees a low-complexity implementation for a family of RBD M-MIMO detectors.

Keywords Massive MIMO - Residual-based detection - Minimal residual - Conjugate residual - Unified hardware

1 Introduction

Multiple-input multiple-output (MIMO) is a key technique
for wireless communications [1] and has been incorporated
into standards such as the 3rd generation partnership project
(3GPP) long term evolution (LTE) and IEEE 802.11n [2].
By equipping hundreds of antennas at transmitters and
serving relatively a small number of users [3], its advanced
version massive MIMO (M-MIMO) provides significant
improvement in spectral efficiency, interference reduction,
transmit-power efficiency, and link reliability [4].

Because of the large antenna number at base station (BS)
or user side, computational complexity becomes unafford-
able in M-MIMO detection. Among existing detections,
zero forcing (ZF) is a basic way, which neglects the effect
of noise [5]. However, its performance is not satisfactory.
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Though linear schemes like minimum mean square error
(MMSE) [6] improve the performance compared with ZF,
its computation complexity still increases drastically as
the antenna number grows. For a M-MIMO channel H,
computational complexity of MMSE inversion is O(M?),
which makes it costly in applications [7]. To avoid matrix
inversion, Neumann series expansion (NSE) [8-10] has
been employed for approximation. However, complexity
remains unaffordable when NSE terms become more than
2. Thus, iterative linear solvers are proposed for further
reduction, such as Gauss-Seidel [11, 12] and conjugate gra-
dient (CG) [13, 14]. Methods like successive over-relaxation
(SOR) [15, 16] and its variation [17] are also considered.
Meanwhile, efficient optimizations of algorithms are also
proposed like precondition [18, 19]. Most iterative linear
detectors can reduce MMSE’s complexity to O(M?) with
tolerable performance loss.

It is worth noting that existing algorithms mainly
focus on approximating exact solution [20], whereas this
paper proposes residual-based detection (RBD) algorithms
which focus on the minimization of residual norm. Firstly,
minimal residual (MINRES) algorithm, which is a basic
RBD, is considered. Its extended version, generalized
minimal residual (GMRES) by [21] is also considered, with
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unavoidable drawbacks, which will be detailed below. In
M-MIMO scenario, GMRES can be derived into another
version: conjugate residual (CR). Computation process and
convergence proof of each RBD algorithm are elaborated.
Numerical results under different antenna configurations
and correlations are given as well. For lower complexity,
the iteration number is chosen as 2, 3, and 4, respectively.
Complexity comparison among proposed RBD algorithms
and the traditional one is also shown, to demonstrate RBD
algorithms’ advantages in performance and complexity.

For application considerations, efficient hardware archi-
tectures of RBD algorithms are required. In this paper,
hardware architectures of MINRES and CR algorithms are
proposed. However, as a family of algorithm, computation
similarity can be referred and accordingly a unified design
method is proposed. The hardware architecture can be given
by two common modules: iterative module and coefficient
module. Unified hardware architecture for both MINRES
and CR algorithms is further proposed, which can also take
care of GMRES. Moreover, the proposed design method can
be also applied in some RBD and other iterative detectors.

The remainder of the paper is organized as follows.
Section 2 gives the system models of non- and correlated M-
MIMO detectors. Section 3 employs RBD algorithms and
shows the convergence proof for each algorithm. Numerical
results are given in Section 4. Section 5 elaborates the
computational complexity of RBD algorithms. Section 6
proposes the hardware architectures of RBD algorithms and
the unified design method. Finally, Section 7 concludes the
entire paper.

Notation The lowercase and upper bold face letters stand
for column vector and matrix, respectively. The operations
()T and (.)7 denote transpose and conjugate transpose,
respectively. The entry in the i-th row and j-th column
of A is A(i, j). The vector & in the k-th iteration is .
Complexity is denoted in terms of complex-valued multipli-
cation number.

2 System Model for Massive MIMO Uplink
2.1 Linear Detection Model

Consider an uplink of a massive MIMO system with N
antennas at the base station (BS), which simultaneously
serves M single antenna users. Here, N is always much
bigger than M (N >> M). The transmitted signal and
received vectors are denoted by s = [s1, 52, ..., sp]¥ and
y = [y, 2, sy yN]T, respectively, where s € cM, y € cN
. Then the system model is

y = Hs + n, ey
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where H is an N x M uplink channel matrix, n is the vector
representing Additive White Gaussian Noise (AWGN) with
zero-mean and variance o2,

According to MMSE equalization scheme, at the BS side,

the estimate of the transmitted symbol vector § is
§=HTH+ 1)) 'Hly = A7y, 2)

where the matrix I means identity matrix with dimension
M, and the MMSE filtering matrix A is defined based on
Gram matrix G:

A =G+, (3)

where G = HYH.
Correspondingly, output of matched filter y is

y =H"y. “4)

Nevertheless, computational complexity of exact matrix
inversion A~!' is O(M?3). Methods such as Cholesky
decomposition based method are not suitable for M-MIMO
detection when its scale increases.

2.2 Correlated Channel Model

Consider correlation of antennas for M-MIMO, this paper
applies Kronecker model in [22] and H can be denoted
by H = R}/ZWR}/Z, where W € CV*M isan N x M
ii.d. channel matrix with zero mean and unit variance.
Meanwhile R, € CN¥*N and R, € CM*M are spatial
correlation matrices at BS and user side:

[ @ed i <k,
m“m_{mwn,i>h )
o @eIH i <k,
R’(”k)_{R;(k,i), i >k ©)

The i-th row and k-th column is denoted by R(i, k). R;
and R; are conjugate matrices of R, and R,, respectively.
This paper contains four scenarios of correlation condition
to elaborate common M-MIMO detectors.

- Uncorrelated: In this condition, correlations of BS and
users are ignored, which means correlation factor ¢; =

¢ = 0. Under this circumstance, Rt1 /2 and Ri/ 2 are
actually Iy and I, respectively. Then H is the ideal
i.i.d. Rayleigh fading channel matrix.

- User Correlated: For multi-antenna users, if the
distance between two BS antennas is larger than half-
wavelength, correlation between BS antennas can be
neglected. In this condition Ri/ 2 becomes diagonal
matrix D, thus H = D, WR}/2.

- BS Correlated: For single-antenna users, correlation
among users is omitted. Nevertheless, as M-MIMO
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contains large-scale antenna array, pathloss between BS
and users cannot be ignored. Thus the channel is H =
R}/ ZWD,, where Dy is a diagonal matrix where pathloss
attenuation factor is represented.

- Fully Correlated: When fully correlated, both user and
BS should be considered. Thus matrix remains H =
Ri/ZWR}/Z, where Rl/z and R:/z are shown in Egs. 5

and 6, respectively.

3 Residual-Based Detection Algorithms

In this section residual-based detection (RBD) is proposed
as a series. For a linear detection problem

As =y, (N

suppose that s, denotes the exact estimation of detection
signal, existing detection methods mainly focus on the
approximation of s to s,, which is denoted by the absolute
error ||s — s.||. Whereas vector r = |y — As|| denotes
the residual norm of the signal, RBD algorithms mainly
focus on the minimization of vector r in the computation
process. This section will give detailed description of RBD
algorithms and the relationship between these algorithms
will be given too. Also, although this section focuses on
hard-output detection, it can be extended into soft-output
detection and the implentation method can be seen in [23].

3.1 Minimal Residual Algorithm

As a kind of projection algorithm for massive MIMO
detection, proposed minimal residual (MINRES) [24] is the
simplest algorithm for its short calculation process, which is
shown in Algorithm 1.

Algorithm 1 Minimal Residual Algorithm

Input: A andy
I: fork=0,..., K do
2: r, =y — Asy

H
. oy Arg
3T e
4: Sk+1 = S + oIk
5: end for

Output: § =sg |

It is easily shown that MINRES minimizes the function
f@s) =y — As||% in the direction of r. Since MINRES
is the simplest RBD algorithm, it requires the filtering
matrix A only to be positive definite. Since the MMSE
filtering matrix A is symmetric positive definite (SPD), the
requirement can be met easily. So

k113 = (rx — axAry, 1 — aAry)
= (T — ok Ary, ry) — o (r — g Arg, Arg). (8)

For the vector ry — ax Ary is orthogonal to search direc-
tion Ary, thus the right side of Eq. 8 vanishes and therefore

2
Irg1lls = (v — g Arg, ri)
= (rg, re) — o (Arg, 1)

2 (Arg, rr) (Arg, ry)
= [lrell”(1 —
(re, rp) (Arg, Arg)
(Arg, r)? [Irell3
= [Ir](1 - - 2). )
(re, )= [ Argll
For the positive definite matrix A,
A 9
AN S din(A+AT)/2 > 0. (10)
(x, x)

Since matrix A is positive definite, its inversion A~! is
positive definite, too. Similarly, let t = Ax then

(Ax,x)  (t, A7)
(Ax, Ax)

e -T
€ > dmin(A™ +A77)/2>0. (11)

Finally, let £(A) denotes Ayin(A + AT)/2, then

Ieks1lls < (1 — (A AN Irel3. (12)

From the derivation given, residual norm in MINRES
algorithm decreases after each iteration, thus the conver-
gence of MINRES can be proven.

3.2 Generalized Minimal Residual Algorithm

The Generalized Minimal Residual (GMRES) Algorithm is
an iterative method to calculate the solution of nonsym-
metric system of linear systems [24]. It is the generalized
version of MINRES, GMRES inference canceller was pro-
posed in [21, 25] first and in this paper, the essence of
GMRES will be introduced. Some computation processes
to elaborate the computation process of GMRES are sup-
plemented in this paper. As a projection method based on
Kk = ky in which «y is V-th Krylov subspace, GMRES
can minimize the residual norm to approximate the exact
solution of As =y by the vector s; € k, where

ky = spanfy, Ay, A%y, ..., AV 1y}, (13)

To avoid the linear independence of vectors y, Ay,...,
AV~ly, Amoldi iteration [26] is used to form orthogonal
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basis qi, qo, ..., qy for ky. Thus vector sy € ky can be
rewritten as s = so+ Qypy, where Qy is an m-by-V matrix
formed by basis qy, q>, ..., Qv

Meanwhile, a (V +1)-by-V upper Hessenberg matrix Hy
is produced in the Arnoldi iteration process, where

AQy = Qy Hy. (14)
Thus, the whole GMRES process can be deduced. Define

J(p) = lly — Asll2 = |ly — A(so + Qvp)ll2
= |ro — AQypl2
= |Bq1 — Qv4+1Hypl2
= |Qv+i(Ber — Hyp)|2. (15)

Since the column-vectors of Qy 4 are orthogonal, it is
easy to understand that

J(p) = ||per — Hypll>. (16)

With the definition of J(p), GMRES algorithm mini-
mizes it and make the signal approximating so + kv . After
knowing this, GMRES approximation can be denoted by
simple equation

sy =so + Qpy, (17)
where
py = argmin || Be; — Hypy|l2. (18)

Accordingly, the computation process of GMRES
algorithm is shown in Algorithm 2.

Algorithm 2 Generalized Minimal Residual Algorithm

Input: A andy
I: 1o =y — Aso, B = [[roll2 and q; =ro/p
2: Define the (V + 1)-by-V matrix Hy. Hy = 0
3:for j=1,...,Vdo

4: w; = qu

5: fori=1,...,jdo

6: HG, j) = q] w;

T w; =w; —HG, j)q;
8: gnd for

o0 B +1,j) =l
10: if H(j + 1, j) = 0 then
11: V = jand go to 13
12: end if

13: q;j+1 =Wj/H(j+l,];)

14 py = argmin [ Be; — Hypl2
15: Sk = sx—1 + Qvpy

16: end for

Output: § = sy

@ Springer

With the information given, M-MIMO detection prob-
lems can be solved easily. However, key step of GMRES is
step-12 in Algorithm 2, which is not mentioned in [21, 25].
To supplement the process of GMRES and make it easier
to be understood, Givens rotation to solve this optimiza-
tion problem is introduced in this paper and can be seen in
Appendix.

For matrix A, (AT 4 A)/2 is positive definite, then in the
k-th iteration,

A2 (1/2(AT 4+ A))
)\max (ATA)

el < (1 — Y2 lroll, (19)

where A,i,(M) and X,,,xM denote the minimum and
maximum eigenvalue of matrix M, respectively.

While in M-MIMO detection scheme, matrix A is SPD,
then Eq. 19 can be deformed to

(A)? —

Il < ( 1)"/2||l‘0|| (20)
T 1(A)? ’

where 17 (A) is the condition number of A.

From Egs. 19 and 20, it can be seen that residual norm of
GMRES strictly decreases after iterations, which shows the
convergence of it. Synthesizing Arnoldi GMRES algorithm
and Givens rotation, the complete GMRES algorithm is a
kind of advanced algorithm as a M-MIMO detection method
by minimizing the norm of the residual vector.

3.3 Conjugate Residual Algorithm

As can be seen in Section 3.2, complete GMRES algorithm
needs too many operations and some of them are square
root, and even matrix inversion from Givens rotation,
which should be avoided in M-MIMO detection scheme.
To remedy this and keep the performance of the algorithm
for M-MIMO detection, GMRES can be updated to an
advanced version.

Consider GMRES is an algorithm for nonsymmetric
problem, while M-MIMO detection is solving a SPD prob-
lem, some restrictions can be added to GMRES, which
makes the GMRES algorithm involving into the proposed
conjugate residual (CR) algorithm. Switching nonsymmet-
ric problems to Hermitian problems, CR can lower the com-
putational complexity of GMRES. Being another Krylov
subspace iterative method, CR also minimizes the residual
vector in each iteration and is feasible in M-MIMO detec-
tion. Computation process of CR algorithm is shown in
Algorithm 3.
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Algorithm 3 CR for MMSE detection

Input: A andy

1: s =0,r0 =y — Asg, po = 1o
2: ey = Apo, mg = Ary

3: fork=1,...,K do

4 ap=rl my_/|lex—1|?
5: Sk = Sk—1 + 0xPi—1

6: I =Tg—1 — O0k€k—]

7: my; = Ary,

8: Bi =rlmy/rf my_
90 Pk =Tk + BrPk—1

10: er = my + fBrer—1

11: end for

Output: § = sg

The output § can be proved to support the convergence of
the algorithm [27]. For CR on an SPD system,

Isell? = lIsk—111% = 20us{_Pe—1 +P{_Px-1 2 0. (1)
Therefore,

lIskll = lIsk—1ll- (22)
Then, final solution can be expressed as s; = s*,

S; = 8/—1 +o—1PI-1

= Sk + 1Pk + -+ A—1PI-1
= Sk—1 + Pk—1 + k1P + - -+ —1P1-1- (23)

From the conclusion above, it can be deduced that

I st —se—1l* = s — sill®
= 204p;_ (1P + - + - 1Pi—1)
+051%P£_1Pk71 > 0.
(24)

While for the MMSE linear detection problem, linear
equation As =y is to be solved. Thus

I s —sk—1llz — lIst —sellz
= 204p}_ | At 1Pr + -+ a1pi—1) + a;%PﬁlAPk—l

= 2oq)_ (s 1Px + -+ 1Pi—1) +a;%qlf_1pk—1 > 0.
(25)

The derivation above indicates that the residual norm is
strictly decreasing. Thus CR is feasible for massive MIMO
detection.

4 Numerical Results and Comparison
4.1 Results with Different Antenna Configurations

With 64-QAM and i.i.d. channel model, the bit-error-rate
(BER) comparison between each RBD algorithm and two
antenna configurations are considered. Here iteration time k
is set as 2, 3 and 4, respectively.

It is worth noting that because CR algorithm is a
derivation of GMRES algorithm in M-MIMO scheme,
they have the same BER performance as mentioned in
Section 3.3. For better elaboration, it is also shown in Fig. 1.
It can be seen that when k = 4, both of them approximate
traditional matrix inversion. To be specific, when BER=
9 x 1073, CR has only 0.25 dB gap between Cholesky
decomposition.

To show the relationship between RBD algorithms and
other algorithms, here we take coordinate descent (CD)
[28] into consideration. In [29], optimized version of CD
is proposed as optimized coordinate descent (OCD). In this
paper, it is fair to compare the BER performance of original
RBD algorithms with original CD algorithm. Here Figs. 2
and 3 compare BER performance of each RBD algorithm
and CD algorithm when the antenna configuration is N X
M = 128 x 16 and 128 x 8, respectively. In Fig. 2, when
BER = 1073 and iteration time k = 4, MINRES has
1.63 dB drawback compared with Cholesky decomposition
while GMRES and CR have 10.25 dB gap with Cholesky
decomposition. Performance of RBD algorithms improve a
lot along with the increment of iteration time k. Meanwhile,
GMRES and CR outperform MINRES a lot. For example,
when BER = 1072 and iteration time k = 3, CR and

BER

—6— GMRES (k=2)
— © — GMRES (k=3)
@ GMRES (k=4)
—+— CR (k=2)
— + = CR (k=3)
weeb CR (ked)
—k— Cholesky

4 6 8 10 12 14 16 18
SNR [dB]

Figure 1 Performance comparison with N x M = 128 x 16.
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BER

B GMRES and CR (lteration k=2)
— B — GMRES and CR (lteration k=3)
—#&— GMRES and CR (lteration k=4)
<N MINRES (Iteration k=2)

— ¥ — MINRES (lteration k=3)
—— MINRES (Iteration k=4)
~O CD (lteration k=2)

— & — CD (lteration k=3)

—6— CD (lteration k=4)

—h— Cholesky Inversion

1072

4 6 8 10 12 14 16 18
SNR [dB]

107

Figure 2 Performance comparison with N x M = 128 x 16.

GMRES outperform MINRES by nearly 4 dB SNR gap.
Also, it can be seen that CD cannot outperform RBD
algorithms. When BER = 8 x 1072 after 4 tims of iterations,
GMRES and CR outperform CD by 2.75 dB and MINRES
outperforms CD by 1.5 dB.

For another antenna configuration N x M = 128 x
8, as shown in Fig. 3, RBD algorithms perform well in
approximating Cholesky decomposition scheme. MINRES
has huge performance improvement as iteration time
increases. Take BER = 7 x 1072 for instance, MINRES has
6.1 dB gain when iteration time increases from k = 2to k =
3. CR and GMRES have almost the same performance with
exact matrix inversion when iteration time k > 3, in which
condition SNR gap between them is less than 0.2 dB. In this
case, CD can approximate the performance of MINRES,

BER

-0+ GMRES and CR (lteration k=2) N
— B — GMRES and CR (Iteration k=3) A

—&— GMRES and CR (lteration k=4) ‘Q\\ -
+F -+ MINRES (lteration k=2) R ~o
— ¥ — MINRES (lteration k=3) AN i )
—— MINRES (lteration k=4)
~O CD (lteration k=2) ~N o4
— © = CD (lteration k=3) v
—©&— CD (lteration k=4)
—#— Cholesky Inversion

106 I I I I I I )
4 6 8 10 12 14 16 18

SNR [dB]

Figure 3 Performance comparison with N x M = 128 x 8.
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—¥— Cholesky (BS Correlated)

CRES and GMRES (BS Correlated)
—&— MINRES (BS Correlated)
— W — Cholesky (User Correlated)

CRES and GMRES (User Correlated)
— B — MINRES (User Correlated)
«§Fr Cholesky (Fully Correlated)

CRES and GMRES (Fully Correlated)
O MINRES (Fully Correlated)

6 7 8 9 10 1 12
SNR [dB]

Figure4 Performance comparison with correlations.

while has no advantage over RBD algorithms. When BER
=9 x 10™4, CD has 0.13 dB drawback than MINRES and
0.23 dB drawback than GMRES and CR after 4 iterations.
From the results above, RBD algorithms perform better than
CD in M-MIMO detection problems.

4.2 Results with Different Correlation Conditions

Consider N x M = 128 x 16 M-MIMO system and iteration
time is 4, BER performances of each RBD algorithm and
Cholesky decomposition are given in Fig. 4. Here three
conditions are considered: i) User Correlated case ({; =
0.4, ¢ = 0), ii) BS correlated case (¢ = 0, ¢ = 0.4), iii)
Fully Correlated case: (¢ = 0.4, ¢ = 0.4).

In Fig. 4, as the correlation factor ¢ varies, performance
of GMRES and CR remain stable and the performance loss
is less than 0.5 dB. MINRES algorithm will suffer from
the change of the correlation condition. However, MINRES
loses up to 1.8 dB when BER = 8 x 10~!. Thus RBD
algorithms are not very sensitive to correlation conditions
for M-MIMO.

5 Computational Complexity Analysis

Computational complexity of each RBD algorithm is
compared to describe the complexity issue of RBD
algorithms. In this section computational complexity is
analyzed for better understanding of RBD algorithms.
As mentioned in Section 3.1, MINRES algorithm is the
basic algorithm in RBD algorithms. GMRES algorithm is
the generalized version of MINRES and is complex in
computation process. To meet the requirement of M-MIMO
system, GMRES can be derived into CR algorithm, which
is suitable for M-MIMO detection. Table 1 concludes the
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Table 1 Complexity comparison of different algorithms.

Operation MINRES GMRES CR
Addition 2kM (3k* + 3k + DM @K + OM
Multiplication 4kM? + 2kM 2kM? + ($k2 + Sk +2)M k +2)M? + 4kM

comparison of different algorithms in terms of complex-
valued additions and complex-valued multiplications.

The detection complexity is mainly contributed by
complex-valued multiplication. The complexity of each
algorithm is compared with Cholesky decomposition.
Suppose the antenna number at BS is 128 and SNR is 20
dB. Complexity comparison is shown in Figs. 5 and 6. Here
Fig. 6 is another showcase of Fig. 5 because it transform the
axes of Fig. 5 into logarithmic and the relationship between
different algorithms can be seen easily.

5.1 Complexity of MINRES

Being the basic RBD, MINRES has the simplest compu-
tation process, though in Fig. 5 its complexity is not the
least. However, when user antenna number is 60, MINRES
can achieve 76% complexity reduction compared with tra-
ditional matrix inversion after 3 iterations and 84% after
2 iterations. Thus the complexity reduction outweighs the
performance loss in terms of trade-off.

5.2 Complexity of GMRES

As a generalized version of MINRES, GMRES has more
application scenarios. However, its complexity rises also. As
shown in Fig. 5, GMRES has higher complexity than other

o X 10° ‘
—%— Cholesky i
18| — & — MINRES (k=2)
—&— MINRES (k=3) ;
161 GMRES (k=2) 1

—E— GMRES (k=3) ;

147 | — B - CR (k=2)
CR (k=3)

Number of complex-valued multiplications

Number of user antennas

Figure5 Computational complexity comparison.

RBD algorithms. Similarly, when user antenna number is
60, GMRES reduces the complexity of traditional method
by 75% after 3 iterations and 86% after 2 iterations.

5.3 Complexity of CR

It is clear that CR has the lowest complexity of RBD
algorithms: in the same condition, CR reduces the
complexity of traditional method by 89% when user antenna
number is 60 after 3 iterations and 91% after 2 iterations.
Having the BER performance in Section 4, CR is the best
algorithm in RBD algorithms and can substitute GMRES in
M-MIMO.

6 Hardware Architecture for RBD Algorithms

Computational process of RBD algorithms is introduced
in Section 3. To further elaborate RBD algorithms, corre-
sponding hardware architectures are shown in Section 6.1
and 6.2. Since GMRES algorithm maintains the same BER
performance as CR algorithm with unaffordable compu-
tational complexity, GMRES algorithm is not hardware
friendly. Thus the implementation of GMRES is replaced
by CR algorithm. A method to unify the hardware design
is also proposed in Section 6.3. Using the new design
method, RBD algorithms can be designed by only two basic

—%— Cholesky

— © - MINRES (k=2)
—&— MINRES (k=3)
5 GMRES (k=2)
10° | | —B— GMRES (k=3)
— P~ CR (k=2)
CR (k=3)

Number of complex-valued multiplications (logarithmic)

Number of user antennas, log(M)

Figure 6 Logarithmic computational complexity comparison.
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Conjugate Residual Algorithm Unit

D,
N

el

Figure 7 Hardware architecture
of CR method. Preprocessing
Unit
m
m
H" Gram A
Matrix ‘
rk-l
Yy g d
Matched D
L, Filter

Output Unit

modules. Unified architectures of MINRES and CR are pro-
posed in Section 6.3 to validate the design method (Fig.
7).

6.1 Hardware Architecture of MINRES Algorithm

As mentioned in Section 3.1, MINRES is the most basic
algorithm of RBD algorithm, thus the hardware architecture
of it is not very complex. Being divided into two units,
Fig. 8 shows the architecture of MINRES algorithm.
Preprocessing Unit computes the output of matched filter y
and matrix A. Minimal Residual Algorithm Unit is the main
unit of the architecture and it minimizes the residual norm in
each iteration. In Fig. 8, y is denoted by yg and the symbol
output is denoted by si41, where the index k is iteration
time.

6.1.1 Preprocessing Unit

In this unit, matched filter module computes y by y
Hy while MMSE filtering matrix A is computed by Gram
matrix module. Since matrix A is Hermitian, M x M lower
triangular systolic array is adopted to compute it. Each
processing element (PE) performs a multiply-accumulate
(MAC) operation with same inputs.

6.1.2 Minimal Residual Algorithm Unit

In this unit, symbol signals are stored and computed
iteratively. Square module with r, m, s, o stores the
corresponding signals of each iteration. The hermitian of
symbol is given after hermitian conjugate module and
module with “/” means division operation, in which the

Figure 8 Hardware architecture ]
of MINRES method. Prep;g]);;ztssmg Minimal Residual Algorithm Unit
H' | Gram |A |
Matrix
Hermitian
Conjugate
Y Matched | Ye
_J\_’ .
Filter
[lATJI?
s
———*—» Qutput

@ Springer



J Sign Process Syst

input from downside is the divisor. Module with “D” is the
delayer which can provide the signal of last iteration for
the algorithm. “Mod” module computes the modulus of the
input signal. At the end of the iteration, output sy is the final
symbol output of MINRES.

6.2 Hardware Architecture of CR Algorithm

Being another RBD algorithm, CR has much lower
computational complexity compared with traditional exact
matrix inversion. As is shown in Section 6.1.1, CR has
better performance than MINRES. Thus CR performs well
in terms of performance within RBD algorithms. Hardware
architecture of CR contains three parts: preprocessing unit,
conjugate residual algorithm unit, output unit. Same with
that of Section 6.1.1, preprocessing unit computes ¥ and
A. Conjugate residual algorithm unit is the main unit and
it computes symbol signals iteratively to minimize residual
norm as well.

6.2.1 Preprocessing Unit

Functioning as a preliminary unit, this unit has the same
architecture with that in Section 6.1.1.

6.2.2 Conjugate Residual Algorithm Unit

As the main computing unit of CR algorithm, this unit
adopts similar functional modules with that in Section 6.1.2.
Differently, with the output of preprocessing unit, CR
algorithm needs initialization, which is denoted by the input
from the downside of the storage module of vector r, p, e,
m. Meanwhile, in this architecture the left input of division
module is dividend and the upper input is the divisor of
division operation.

6.2.3 Output Unit
With the output of CR algorithm unit, we provide the

estimation of transmitted signal stored in s. When the
iteration ends, final symbol output is denoted by sg.

6.3 Unified Hardware Architecture

Being RBD algorithm, MINRES and CR have different
architectures. Thus in terms of implementation they are
uncorrelated. Thanks to the special characteristic of RBD
algorithm that the minimization of residual norm, RBD
algorithms can be designed by a unified design method.
In this part a design method to normalize the hardware
architecture of RBD algorithm is firstly introduced and then
unified architecture of MINRES and CR are given.

6.3.1 Normalizing Design Method of RBD Algorithms

The purpose of the normalizing design method is to
make the hardware design of RBD algorithms flexible and
reusable, users can switch detectors with existing hardware
resources as long as they want to. To meet this purpose,
synthesizing the characteristic of RBD algorithms, which
is minimizing the residual norm, the normalizing design
method is then applied.

Consider the computation process and hardware module
of RBD algorithms, this method takes two modules as
basic modules: iterative module and coefficient module.
Iterative module can iteratively update the signal or compute
the residual norm in each iteration. Another module is
coefficient module which computes the coefficient of each
vector in computation process. Hardware architectures of
both basic modules are shown in Fig. 9.

Iterative module consists of two operation unit, a multi-
plier and an accumulator, which performs a MAC operation.
Coefficient module consists of two Hermitian conjugate
module, a division module and a multiplier, which provides
the coefficient for each iteration module. Upper input of this
module is the dividend and the input from downside is the
divisor. Operation of each module can be denoted by

y = x + ab,
¢ —mn (26)
pq

Having these two basic modules, hardware architectures
of RBD algorithms can be unified. Besides basic modules,

Figure 9 Basic modules of a b n
unified hardware architecture. |
m— e ()
—
X U > Y p— e ()
|
q

a Iterative module

b Coefficient module
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Figure 10 Unified architecture
of MINRES algorithm. H" A
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only some multipliers and delayers are needed. Thus the
flexibility of hardware can be improved and the architecture
can be reused for further usage. Those two basic modules
can also be used in some other iterative detection algo-
rithms. To validate the reasonability of this design method,
unified hardware architectures are given in Sections 6.3.2
and 6.3.3.

6.3.2 Unified Architecture of MINRES Algorithm

As the basic algorithm of RBD algorithms, MINRES does
not need many basic modules, the unified architecture of it
contains two iterative modules and a coefficient module.
Input signal of this unified architecture is also com-
puted from Gram matrix module and matched filter. By

normalizing design method, MINRES algorithm adopts two
iterative modules to store the residual r and signal s. Coeffi-
cient module serves for the coefficient a. Aside from basic
modules, unified hardware architecture of MINRES only
has an additional multiplier. After the computation of iter-
ation, symbol output is given as the output of an iterative
module (Fig. 10).

6.3.3 Unified Hardware Architecture of CR Algorithm

Traditional hardware architecture of CR algorithm is kind
of complex as shown in Fig. 7. After normalization, the
architecture is shown in Fig. 11.

Unified hardware architecture of CR algorithm contains
four iterative modules and two coefficient modules. Iterative

ArL\
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Figure 11 Unified architecture of CR algorithm.
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modules are placed for the storage of signal r, e, p and s.
Coefficient modules store the value of coefficient a and .
Within each iteration, signal m is updated by a multiplier
and two delayers in the architecture store corresponding
signal of last iteration, as mentioned in Algorithm 3.
Initialization of each signal is the upper input of each
module.

With the proposed method in Section 6.3.1, hardware
architectures of RBD algorithms can be unified. Further-
more, the design method can also be applied to other linear
iterative detectors like CG.

7 Conclusion

In this paper, RBD algorithms are first proposed, including
MINRES algorithm, GMRES algorithm and CR algorithm.
Distinguished from most of other iterative linear detec-
tion algorithms, proposed RBD algorithms focus on the
minimization of residual norm. Numerical results of dif-
ferent antenna configurations and correlation conditions
have demonstrated the approximation to the performance
of traditional matrix inversion and the stability of algo-
rithms, respectively. In addition, computational complexity
of RBD algorithms are compared and the comparison with
matrix inversion shows the complexity reduction advan-
tage of RBD algorithms. Finally hardware architectures of
RBD algorithms are first given and the following proposed
normalizing design method is adopted, then the unified
hardware architectures of RBD algorithms are proposed.
Therefore, the proposed RBD algorithms are of good perfor-
mance, low complexity, and correlation robustness, which
are favorable for M-MIMO systems. Future work will be
directed towards FPGA implementation of RBD algorithms
and further optimization of RBD algorithms.
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Appendix : Derivation of Givens Rotation

Given the problem p = argmin |3e; — Hypl|2, knowing
that ﬁv is a (V 4+ 1)-by-V matrix. It is shown that an
over-constrained linear system of V + 1 equations for V
unknowns is given and the minimum can be computed by
QR decomposition [30]. An (V + 1)-by-(V + 1) orthogonal
matrix Qy and an (V + 1)-by-V upper triangular matrix Ry
such that Qvﬁv = Rv.

Because of the characteristic of matrix Hy and Ry, they
can be denoted as

; Hy hyy :| 5 [Rv :|

H = ,Ry = s 27
V+1 [ 0 hysovil 1% 0 (27)

where hy 1 = (h1.v41, ... hy41.v+1)!. Premultiplying

the Hessenberg matrix with Qy, a nearly triangular matrix
can be yielded with zeros and a row with multiplicative
identity as

o 1 |Hv+a=| 0 »o | (28)

[Qv O} y Ry ryg
0 o

If o = 0, this matrix would be triangular. Givens rotation
[31] will remedy this as

Iy 0 O
Gvii=| 0 ¢y by |, (29)
0 —bv cy
where
P o
and by = ——. (30)

,02 + o2
After the processing of Givens rotation, matrix Qy can
be formed as

Qy 0
QV+1—GV|: 0 1] (3D
Meanwhile, a triangular matrix is yielded as
y Ry rvqi
QvitHypr = 0 rvprv4r | (32)
0 0

where ry 41 v41 = +/p% + 02
Then given the QR decomposition, the minimization
problem can be solved by the transform that

| Hypy — Beill = Qv (Hypy — Ben)|l

= [Rvpy — B<ei]. (33)
Afterwards, using vector gy to denote SQ2e; as
P gv
= , 34
gv |:)/v :| (34)

where gy € Ry and yy € R.
Finally, norm ||[Hypy — Bej|| can be denoted by

[Hypy — Beill = [Rypy — BQvei||
Ry gv } H
= — . 35
1 -5 @
So vector p that minimizes the norm is
pv =R} 'gy, (36)

where vector gy can be updated easily and the minimization
problem can be solved.
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